home *** CD-ROM | disk | FTP | other *** search
Text File | 1998-06-24 | 287.0 KB | 10,981 lines |
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
- M68000 Hi-Performance Microprocessor Division
- M68060 Software Package
- Production Release P1.00 -- October 10, 1994
-
- M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.
-
- THE SOFTWARE is provided on an "AS IS" basis and without warranty.
- To the maximum extent permitted by applicable law,
- MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
- INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
- and any warranty against infringement with regard to the SOFTWARE
- (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
-
- To the maximum extent permitted by applicable law,
- IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
- (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
- BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
- ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
- Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
-
- You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
- so long as this entire notice is retained without alteration in any modified and/or
- redistributed versions, and that such modified versions are clearly identified as such.
- No licenses are granted by implication, estoppel or otherwise under any patents
- or trademarks of Motorola, Inc.
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- #
- # lfptop.s:
- # This file is appended to the top of the 060ILSP package
- # and contains the entry points into the package. The user, in
- # effect, branches to one of the branch table entries located here.
- #
-
- bra.l _facoss_
- short 0x0000
- bra.l _facosd_
- short 0x0000
- bra.l _facosx_
- short 0x0000
-
- bra.l _fasins_
- short 0x0000
- bra.l _fasind_
- short 0x0000
- bra.l _fasinx_
- short 0x0000
-
- bra.l _fatans_
- short 0x0000
- bra.l _fatand_
- short 0x0000
- bra.l _fatanx_
- short 0x0000
-
- bra.l _fatanhs_
- short 0x0000
- bra.l _fatanhd_
- short 0x0000
- bra.l _fatanhx_
- short 0x0000
-
- bra.l _fcoss_
- short 0x0000
- bra.l _fcosd_
- short 0x0000
- bra.l _fcosx_
- short 0x0000
-
- bra.l _fcoshs_
- short 0x0000
- bra.l _fcoshd_
- short 0x0000
- bra.l _fcoshx_
- short 0x0000
-
- bra.l _fetoxs_
- short 0x0000
- bra.l _fetoxd_
- short 0x0000
- bra.l _fetoxx_
- short 0x0000
-
- bra.l _fetoxm1s_
- short 0x0000
- bra.l _fetoxm1d_
- short 0x0000
- bra.l _fetoxm1x_
- short 0x0000
-
- bra.l _fgetexps_
- short 0x0000
- bra.l _fgetexpd_
- short 0x0000
- bra.l _fgetexpx_
- short 0x0000
-
- bra.l _fgetmans_
- short 0x0000
- bra.l _fgetmand_
- short 0x0000
- bra.l _fgetmanx_
- short 0x0000
-
- bra.l _flog10s_
- short 0x0000
- bra.l _flog10d_
- short 0x0000
- bra.l _flog10x_
- short 0x0000
-
- bra.l _flog2s_
- short 0x0000
- bra.l _flog2d_
- short 0x0000
- bra.l _flog2x_
- short 0x0000
-
- bra.l _flogns_
- short 0x0000
- bra.l _flognd_
- short 0x0000
- bra.l _flognx_
- short 0x0000
-
- bra.l _flognp1s_
- short 0x0000
- bra.l _flognp1d_
- short 0x0000
- bra.l _flognp1x_
- short 0x0000
-
- bra.l _fmods_
- short 0x0000
- bra.l _fmodd_
- short 0x0000
- bra.l _fmodx_
- short 0x0000
-
- bra.l _frems_
- short 0x0000
- bra.l _fremd_
- short 0x0000
- bra.l _fremx_
- short 0x0000
-
- bra.l _fscales_
- short 0x0000
- bra.l _fscaled_
- short 0x0000
- bra.l _fscalex_
- short 0x0000
-
- bra.l _fsins_
- short 0x0000
- bra.l _fsind_
- short 0x0000
- bra.l _fsinx_
- short 0x0000
-
- bra.l _fsincoss_
- short 0x0000
- bra.l _fsincosd_
- short 0x0000
- bra.l _fsincosx_
- short 0x0000
-
- bra.l _fsinhs_
- short 0x0000
- bra.l _fsinhd_
- short 0x0000
- bra.l _fsinhx_
- short 0x0000
-
- bra.l _ftans_
- short 0x0000
- bra.l _ftand_
- short 0x0000
- bra.l _ftanx_
- short 0x0000
-
- bra.l _ftanhs_
- short 0x0000
- bra.l _ftanhd_
- short 0x0000
- bra.l _ftanhx_
- short 0x0000
-
- bra.l _ftentoxs_
- short 0x0000
- bra.l _ftentoxd_
- short 0x0000
- bra.l _ftentoxx_
- short 0x0000
-
- bra.l _ftwotoxs_
- short 0x0000
- bra.l _ftwotoxd_
- short 0x0000
- bra.l _ftwotoxx_
- short 0x0000
-
- bra.l _fabss_
- short 0x0000
- bra.l _fabsd_
- short 0x0000
- bra.l _fabsx_
- short 0x0000
-
- bra.l _fadds_
- short 0x0000
- bra.l _faddd_
- short 0x0000
- bra.l _faddx_
- short 0x0000
-
- bra.l _fdivs_
- short 0x0000
- bra.l _fdivd_
- short 0x0000
- bra.l _fdivx_
- short 0x0000
-
- bra.l _fints_
- short 0x0000
- bra.l _fintd_
- short 0x0000
- bra.l _fintx_
- short 0x0000
-
- bra.l _fintrzs_
- short 0x0000
- bra.l _fintrzd_
- short 0x0000
- bra.l _fintrzx_
- short 0x0000
-
- bra.l _fmuls_
- short 0x0000
- bra.l _fmuld_
- short 0x0000
- bra.l _fmulx_
- short 0x0000
-
- bra.l _fnegs_
- short 0x0000
- bra.l _fnegd_
- short 0x0000
- bra.l _fnegx_
- short 0x0000
-
- bra.l _fsqrts_
- short 0x0000
- bra.l _fsqrtd_
- short 0x0000
- bra.l _fsqrtx_
- short 0x0000
-
- bra.l _fsubs_
- short 0x0000
- bra.l _fsubd_
- short 0x0000
- bra.l _fsubx_
- short 0x0000
-
- # leave room for future possible additions
- align 0x400
-
- #
- # This file contains a set of define statements for constants
- # in order to promote readability within the corecode itself.
- #
-
- set LOCAL_SIZE, 192 # stack frame size(bytes)
- set LV, -LOCAL_SIZE # stack offset
-
- set EXC_SR, 0x4 # stack status register
- set EXC_PC, 0x6 # stack pc
- set EXC_VOFF, 0xa # stacked vector offset
- set EXC_EA, 0xc # stacked <ea>
-
- set EXC_FP, 0x0 # frame pointer
-
- set EXC_AREGS, -68 # offset of all address regs
- set EXC_DREGS, -100 # offset of all data regs
- set EXC_FPREGS, -36 # offset of all fp regs
-
- set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7
- set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7
- set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6
- set EXC_A5, EXC_AREGS+(5*4)
- set EXC_A4, EXC_AREGS+(4*4)
- set EXC_A3, EXC_AREGS+(3*4)
- set EXC_A2, EXC_AREGS+(2*4)
- set EXC_A1, EXC_AREGS+(1*4)
- set EXC_A0, EXC_AREGS+(0*4)
- set EXC_D7, EXC_DREGS+(7*4)
- set EXC_D6, EXC_DREGS+(6*4)
- set EXC_D5, EXC_DREGS+(5*4)
- set EXC_D4, EXC_DREGS+(4*4)
- set EXC_D3, EXC_DREGS+(3*4)
- set EXC_D2, EXC_DREGS+(2*4)
- set EXC_D1, EXC_DREGS+(1*4)
- set EXC_D0, EXC_DREGS+(0*4)
-
- set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0
- set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1
- set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used)
-
- set FP_SCR1, LV+80 # fp scratch 1
- set FP_SCR1_EX, FP_SCR1+0
- set FP_SCR1_SGN, FP_SCR1+2
- set FP_SCR1_HI, FP_SCR1+4
- set FP_SCR1_LO, FP_SCR1+8
-
- set FP_SCR0, LV+68 # fp scratch 0
- set FP_SCR0_EX, FP_SCR0+0
- set FP_SCR0_SGN, FP_SCR0+2
- set FP_SCR0_HI, FP_SCR0+4
- set FP_SCR0_LO, FP_SCR0+8
-
- set FP_DST, LV+56 # fp destination operand
- set FP_DST_EX, FP_DST+0
- set FP_DST_SGN, FP_DST+2
- set FP_DST_HI, FP_DST+4
- set FP_DST_LO, FP_DST+8
-
- set FP_SRC, LV+44 # fp source operand
- set FP_SRC_EX, FP_SRC+0
- set FP_SRC_SGN, FP_SRC+2
- set FP_SRC_HI, FP_SRC+4
- set FP_SRC_LO, FP_SRC+8
-
- set USER_FPIAR, LV+40 # FP instr address register
-
- set USER_FPSR, LV+36 # FP status register
- set FPSR_CC, USER_FPSR+0 # FPSR condition codes
- set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte
- set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte
- set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte
-
- set USER_FPCR, LV+32 # FP control register
- set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable
- set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control
-
- set L_SCR3, LV+28 # integer scratch 3
- set L_SCR2, LV+24 # integer scratch 2
- set L_SCR1, LV+20 # integer scratch 1
-
- set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst)
-
- set EXC_TEMP2, LV+24 # temporary space
- set EXC_TEMP, LV+16 # temporary space
-
- set DTAG, LV+15 # destination operand type
- set STAG, LV+14 # source operand type
-
- set SPCOND_FLG, LV+10 # flag: special case (see below)
-
- set EXC_CC, LV+8 # saved condition codes
- set EXC_EXTWPTR, LV+4 # saved current PC (active)
- set EXC_EXTWORD, LV+2 # saved extension word
- set EXC_CMDREG, LV+2 # saved extension word
- set EXC_OPWORD, LV+0 # saved operation word
-
- ################################
-
- # Helpful macros
-
- set FTEMP, 0 # offsets within an
- set FTEMP_EX, 0 # extended precision
- set FTEMP_SGN, 2 # value saved in memory.
- set FTEMP_HI, 4
- set FTEMP_LO, 8
- set FTEMP_GRS, 12
-
- set LOCAL, 0 # offsets within an
- set LOCAL_EX, 0 # extended precision
- set LOCAL_SGN, 2 # value saved in memory.
- set LOCAL_HI, 4
- set LOCAL_LO, 8
- set LOCAL_GRS, 12
-
- set DST, 0 # offsets within an
- set DST_EX, 0 # extended precision
- set DST_HI, 4 # value saved in memory.
- set DST_LO, 8
-
- set SRC, 0 # offsets within an
- set SRC_EX, 0 # extended precision
- set SRC_HI, 4 # value saved in memory.
- set SRC_LO, 8
-
- set SGL_LO, 0x3f81 # min sgl prec exponent
- set SGL_HI, 0x407e # max sgl prec exponent
- set DBL_LO, 0x3c01 # min dbl prec exponent
- set DBL_HI, 0x43fe # max dbl prec exponent
- set EXT_LO, 0x0 # min ext prec exponent
- set EXT_HI, 0x7ffe # max ext prec exponent
-
- set EXT_BIAS, 0x3fff # extended precision bias
- set SGL_BIAS, 0x007f # single precision bias
- set DBL_BIAS, 0x03ff # double precision bias
-
- set NORM, 0x00 # operand type for STAG/DTAG
- set ZERO, 0x01 # operand type for STAG/DTAG
- set INF, 0x02 # operand type for STAG/DTAG
- set QNAN, 0x03 # operand type for STAG/DTAG
- set DENORM, 0x04 # operand type for STAG/DTAG
- set SNAN, 0x05 # operand type for STAG/DTAG
- set UNNORM, 0x06 # operand type for STAG/DTAG
-
- ##################
- # FPSR/FPCR bits #
- ##################
- set neg_bit, 0x3 # negative result
- set z_bit, 0x2 # zero result
- set inf_bit, 0x1 # infinite result
- set nan_bit, 0x0 # NAN result
-
- set q_sn_bit, 0x7 # sign bit of quotient byte
-
- set bsun_bit, 7 # branch on unordered
- set snan_bit, 6 # signalling NAN
- set operr_bit, 5 # operand error
- set ovfl_bit, 4 # overflow
- set unfl_bit, 3 # underflow
- set dz_bit, 2 # divide by zero
- set inex2_bit, 1 # inexact result 2
- set inex1_bit, 0 # inexact result 1
-
- set aiop_bit, 7 # accrued inexact operation bit
- set aovfl_bit, 6 # accrued overflow bit
- set aunfl_bit, 5 # accrued underflow bit
- set adz_bit, 4 # accrued dz bit
- set ainex_bit, 3 # accrued inexact bit
-
- #############################
- # FPSR individual bit masks #
- #############################
- set neg_mask, 0x08000000 # negative bit mask (lw)
- set inf_mask, 0x02000000 # infinity bit mask (lw)
- set z_mask, 0x04000000 # zero bit mask (lw)
- set nan_mask, 0x01000000 # nan bit mask (lw)
-
- set neg_bmask, 0x08 # negative bit mask (byte)
- set inf_bmask, 0x02 # infinity bit mask (byte)
- set z_bmask, 0x04 # zero bit mask (byte)
- set nan_bmask, 0x01 # nan bit mask (byte)
-
- set bsun_mask, 0x00008000 # bsun exception mask
- set snan_mask, 0x00004000 # snan exception mask
- set operr_mask, 0x00002000 # operr exception mask
- set ovfl_mask, 0x00001000 # overflow exception mask
- set unfl_mask, 0x00000800 # underflow exception mask
- set dz_mask, 0x00000400 # dz exception mask
- set inex2_mask, 0x00000200 # inex2 exception mask
- set inex1_mask, 0x00000100 # inex1 exception mask
-
- set aiop_mask, 0x00000080 # accrued illegal operation
- set aovfl_mask, 0x00000040 # accrued overflow
- set aunfl_mask, 0x00000020 # accrued underflow
- set adz_mask, 0x00000010 # accrued divide by zero
- set ainex_mask, 0x00000008 # accrued inexact
-
- ######################################
- # FPSR combinations used in the FPSP #
- ######################################
- set dzinf_mask, inf_mask+dz_mask+adz_mask
- set opnan_mask, nan_mask+operr_mask+aiop_mask
- set nzi_mask, 0x01ffffff #clears N, Z, and I
- set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask
- set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask
- set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask
- set inx1a_mask, inex1_mask+ainex_mask
- set inx2a_mask, inex2_mask+ainex_mask
- set snaniop_mask, nan_mask+snan_mask+aiop_mask
- set snaniop2_mask, snan_mask+aiop_mask
- set naniop_mask, nan_mask+aiop_mask
- set neginf_mask, neg_mask+inf_mask
- set infaiop_mask, inf_mask+aiop_mask
- set negz_mask, neg_mask+z_mask
- set opaop_mask, operr_mask+aiop_mask
- set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask
- set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask
-
- #########
- # misc. #
- #########
- set rnd_stky_bit, 29 # stky bit pos in longword
-
- set sign_bit, 0x7 # sign bit
- set signan_bit, 0x6 # signalling nan bit
-
- set sgl_thresh, 0x3f81 # minimum sgl exponent
- set dbl_thresh, 0x3c01 # minimum dbl exponent
-
- set x_mode, 0x0 # extended precision
- set s_mode, 0x4 # single precision
- set d_mode, 0x8 # double precision
-
- set rn_mode, 0x0 # round-to-nearest
- set rz_mode, 0x1 # round-to-zero
- set rm_mode, 0x2 # round-tp-minus-infinity
- set rp_mode, 0x3 # round-to-plus-infinity
-
- set mantissalen, 64 # length of mantissa in bits
-
- set BYTE, 1 # len(byte) == 1 byte
- set WORD, 2 # len(word) == 2 bytes
- set LONG, 4 # len(longword) == 2 bytes
-
- set BSUN_VEC, 0xc0 # bsun vector offset
- set INEX_VEC, 0xc4 # inexact vector offset
- set DZ_VEC, 0xc8 # dz vector offset
- set UNFL_VEC, 0xcc # unfl vector offset
- set OPERR_VEC, 0xd0 # operr vector offset
- set OVFL_VEC, 0xd4 # ovfl vector offset
- set SNAN_VEC, 0xd8 # snan vector offset
-
- ###########################
- # SPecial CONDition FLaGs #
- ###########################
- set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception
- set fbsun_flg, 0x02 # flag bit: bsun exception
- set mia7_flg, 0x04 # flag bit: (a7)+ <ea>
- set mda7_flg, 0x08 # flag bit: -(a7) <ea>
- set fmovm_flg, 0x40 # flag bit: fmovm instruction
- set immed_flg, 0x80 # flag bit: &<data> <ea>
-
- set ftrapcc_bit, 0x0
- set fbsun_bit, 0x1
- set mia7_bit, 0x2
- set mda7_bit, 0x3
- set immed_bit, 0x7
-
- ##################################
- # TRANSCENDENTAL "LAST-OP" FLAGS #
- ##################################
- set FMUL_OP, 0x0 # fmul instr performed last
- set FDIV_OP, 0x1 # fdiv performed last
- set FADD_OP, 0x2 # fadd performed last
- set FMOV_OP, 0x3 # fmov performed last
-
- #############
- # CONSTANTS #
- #############
- T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD
- T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL
-
- PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000
- PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
-
- TWOBYPI:
- long 0x3FE45F30,0x6DC9C883
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _fsins_
- _fsins_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L0_2s
- bsr.l ssin # operand is a NORM
- bra.b _L0_6s
- _L0_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L0_3s # no
- bsr.l src_zero # yes
- bra.b _L0_6s
- _L0_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L0_4s # no
- bsr.l t_operr # yes
- bra.b _L0_6s
- _L0_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L0_5s # no
- bsr.l src_qnan # yes
- bra.b _L0_6s
- _L0_5s:
- bsr.l ssind # operand is a DENORM
- _L0_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fsind_
- _fsind_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L0_2d
- bsr.l ssin # operand is a NORM
- bra.b _L0_6d
- _L0_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L0_3d # no
- bsr.l src_zero # yes
- bra.b _L0_6d
- _L0_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L0_4d # no
- bsr.l t_operr # yes
- bra.b _L0_6d
- _L0_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L0_5d # no
- bsr.l src_qnan # yes
- bra.b _L0_6d
- _L0_5d:
- bsr.l ssind # operand is a DENORM
- _L0_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fsinx_
- _fsinx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L0_2x
- bsr.l ssin # operand is a NORM
- bra.b _L0_6x
- _L0_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L0_3x # no
- bsr.l src_zero # yes
- bra.b _L0_6x
- _L0_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L0_4x # no
- bsr.l t_operr # yes
- bra.b _L0_6x
- _L0_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L0_5x # no
- bsr.l src_qnan # yes
- bra.b _L0_6x
- _L0_5x:
- bsr.l ssind # operand is a DENORM
- _L0_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _fcoss_
- _fcoss_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L1_2s
- bsr.l scos # operand is a NORM
- bra.b _L1_6s
- _L1_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L1_3s # no
- bsr.l ld_pone # yes
- bra.b _L1_6s
- _L1_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L1_4s # no
- bsr.l t_operr # yes
- bra.b _L1_6s
- _L1_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L1_5s # no
- bsr.l src_qnan # yes
- bra.b _L1_6s
- _L1_5s:
- bsr.l scosd # operand is a DENORM
- _L1_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fcosd_
- _fcosd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L1_2d
- bsr.l scos # operand is a NORM
- bra.b _L1_6d
- _L1_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L1_3d # no
- bsr.l ld_pone # yes
- bra.b _L1_6d
- _L1_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L1_4d # no
- bsr.l t_operr # yes
- bra.b _L1_6d
- _L1_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L1_5d # no
- bsr.l src_qnan # yes
- bra.b _L1_6d
- _L1_5d:
- bsr.l scosd # operand is a DENORM
- _L1_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fcosx_
- _fcosx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L1_2x
- bsr.l scos # operand is a NORM
- bra.b _L1_6x
- _L1_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L1_3x # no
- bsr.l ld_pone # yes
- bra.b _L1_6x
- _L1_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L1_4x # no
- bsr.l t_operr # yes
- bra.b _L1_6x
- _L1_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L1_5x # no
- bsr.l src_qnan # yes
- bra.b _L1_6x
- _L1_5x:
- bsr.l scosd # operand is a DENORM
- _L1_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _fsinhs_
- _fsinhs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L2_2s
- bsr.l ssinh # operand is a NORM
- bra.b _L2_6s
- _L2_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L2_3s # no
- bsr.l src_zero # yes
- bra.b _L2_6s
- _L2_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L2_4s # no
- bsr.l src_inf # yes
- bra.b _L2_6s
- _L2_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L2_5s # no
- bsr.l src_qnan # yes
- bra.b _L2_6s
- _L2_5s:
- bsr.l ssinhd # operand is a DENORM
- _L2_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fsinhd_
- _fsinhd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L2_2d
- bsr.l ssinh # operand is a NORM
- bra.b _L2_6d
- _L2_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L2_3d # no
- bsr.l src_zero # yes
- bra.b _L2_6d
- _L2_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L2_4d # no
- bsr.l src_inf # yes
- bra.b _L2_6d
- _L2_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L2_5d # no
- bsr.l src_qnan # yes
- bra.b _L2_6d
- _L2_5d:
- bsr.l ssinhd # operand is a DENORM
- _L2_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fsinhx_
- _fsinhx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L2_2x
- bsr.l ssinh # operand is a NORM
- bra.b _L2_6x
- _L2_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L2_3x # no
- bsr.l src_zero # yes
- bra.b _L2_6x
- _L2_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L2_4x # no
- bsr.l src_inf # yes
- bra.b _L2_6x
- _L2_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L2_5x # no
- bsr.l src_qnan # yes
- bra.b _L2_6x
- _L2_5x:
- bsr.l ssinhd # operand is a DENORM
- _L2_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _flognp1s_
- _flognp1s_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L3_2s
- bsr.l slognp1 # operand is a NORM
- bra.b _L3_6s
- _L3_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L3_3s # no
- bsr.l src_zero # yes
- bra.b _L3_6s
- _L3_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L3_4s # no
- bsr.l sopr_inf # yes
- bra.b _L3_6s
- _L3_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L3_5s # no
- bsr.l src_qnan # yes
- bra.b _L3_6s
- _L3_5s:
- bsr.l slognp1d # operand is a DENORM
- _L3_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flognp1d_
- _flognp1d_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L3_2d
- bsr.l slognp1 # operand is a NORM
- bra.b _L3_6d
- _L3_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L3_3d # no
- bsr.l src_zero # yes
- bra.b _L3_6d
- _L3_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L3_4d # no
- bsr.l sopr_inf # yes
- bra.b _L3_6d
- _L3_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L3_5d # no
- bsr.l src_qnan # yes
- bra.b _L3_6d
- _L3_5d:
- bsr.l slognp1d # operand is a DENORM
- _L3_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flognp1x_
- _flognp1x_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L3_2x
- bsr.l slognp1 # operand is a NORM
- bra.b _L3_6x
- _L3_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L3_3x # no
- bsr.l src_zero # yes
- bra.b _L3_6x
- _L3_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L3_4x # no
- bsr.l sopr_inf # yes
- bra.b _L3_6x
- _L3_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L3_5x # no
- bsr.l src_qnan # yes
- bra.b _L3_6x
- _L3_5x:
- bsr.l slognp1d # operand is a DENORM
- _L3_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _fetoxm1s_
- _fetoxm1s_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L4_2s
- bsr.l setoxm1 # operand is a NORM
- bra.b _L4_6s
- _L4_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L4_3s # no
- bsr.l src_zero # yes
- bra.b _L4_6s
- _L4_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L4_4s # no
- bsr.l setoxm1i # yes
- bra.b _L4_6s
- _L4_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L4_5s # no
- bsr.l src_qnan # yes
- bra.b _L4_6s
- _L4_5s:
- bsr.l setoxm1d # operand is a DENORM
- _L4_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fetoxm1d_
- _fetoxm1d_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L4_2d
- bsr.l setoxm1 # operand is a NORM
- bra.b _L4_6d
- _L4_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L4_3d # no
- bsr.l src_zero # yes
- bra.b _L4_6d
- _L4_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L4_4d # no
- bsr.l setoxm1i # yes
- bra.b _L4_6d
- _L4_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L4_5d # no
- bsr.l src_qnan # yes
- bra.b _L4_6d
- _L4_5d:
- bsr.l setoxm1d # operand is a DENORM
- _L4_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fetoxm1x_
- _fetoxm1x_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L4_2x
- bsr.l setoxm1 # operand is a NORM
- bra.b _L4_6x
- _L4_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L4_3x # no
- bsr.l src_zero # yes
- bra.b _L4_6x
- _L4_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L4_4x # no
- bsr.l setoxm1i # yes
- bra.b _L4_6x
- _L4_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L4_5x # no
- bsr.l src_qnan # yes
- bra.b _L4_6x
- _L4_5x:
- bsr.l setoxm1d # operand is a DENORM
- _L4_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _ftanhs_
- _ftanhs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L5_2s
- bsr.l stanh # operand is a NORM
- bra.b _L5_6s
- _L5_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L5_3s # no
- bsr.l src_zero # yes
- bra.b _L5_6s
- _L5_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L5_4s # no
- bsr.l src_one # yes
- bra.b _L5_6s
- _L5_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L5_5s # no
- bsr.l src_qnan # yes
- bra.b _L5_6s
- _L5_5s:
- bsr.l stanhd # operand is a DENORM
- _L5_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftanhd_
- _ftanhd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L5_2d
- bsr.l stanh # operand is a NORM
- bra.b _L5_6d
- _L5_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L5_3d # no
- bsr.l src_zero # yes
- bra.b _L5_6d
- _L5_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L5_4d # no
- bsr.l src_one # yes
- bra.b _L5_6d
- _L5_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L5_5d # no
- bsr.l src_qnan # yes
- bra.b _L5_6d
- _L5_5d:
- bsr.l stanhd # operand is a DENORM
- _L5_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftanhx_
- _ftanhx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L5_2x
- bsr.l stanh # operand is a NORM
- bra.b _L5_6x
- _L5_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L5_3x # no
- bsr.l src_zero # yes
- bra.b _L5_6x
- _L5_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L5_4x # no
- bsr.l src_one # yes
- bra.b _L5_6x
- _L5_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L5_5x # no
- bsr.l src_qnan # yes
- bra.b _L5_6x
- _L5_5x:
- bsr.l stanhd # operand is a DENORM
- _L5_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _fatans_
- _fatans_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L6_2s
- bsr.l satan # operand is a NORM
- bra.b _L6_6s
- _L6_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L6_3s # no
- bsr.l src_zero # yes
- bra.b _L6_6s
- _L6_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L6_4s # no
- bsr.l spi_2 # yes
- bra.b _L6_6s
- _L6_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L6_5s # no
- bsr.l src_qnan # yes
- bra.b _L6_6s
- _L6_5s:
- bsr.l satand # operand is a DENORM
- _L6_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fatand_
- _fatand_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L6_2d
- bsr.l satan # operand is a NORM
- bra.b _L6_6d
- _L6_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L6_3d # no
- bsr.l src_zero # yes
- bra.b _L6_6d
- _L6_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L6_4d # no
- bsr.l spi_2 # yes
- bra.b _L6_6d
- _L6_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L6_5d # no
- bsr.l src_qnan # yes
- bra.b _L6_6d
- _L6_5d:
- bsr.l satand # operand is a DENORM
- _L6_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fatanx_
- _fatanx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L6_2x
- bsr.l satan # operand is a NORM
- bra.b _L6_6x
- _L6_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L6_3x # no
- bsr.l src_zero # yes
- bra.b _L6_6x
- _L6_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L6_4x # no
- bsr.l spi_2 # yes
- bra.b _L6_6x
- _L6_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L6_5x # no
- bsr.l src_qnan # yes
- bra.b _L6_6x
- _L6_5x:
- bsr.l satand # operand is a DENORM
- _L6_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _fasins_
- _fasins_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L7_2s
- bsr.l sasin # operand is a NORM
- bra.b _L7_6s
- _L7_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L7_3s # no
- bsr.l src_zero # yes
- bra.b _L7_6s
- _L7_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L7_4s # no
- bsr.l t_operr # yes
- bra.b _L7_6s
- _L7_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L7_5s # no
- bsr.l src_qnan # yes
- bra.b _L7_6s
- _L7_5s:
- bsr.l sasind # operand is a DENORM
- _L7_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fasind_
- _fasind_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L7_2d
- bsr.l sasin # operand is a NORM
- bra.b _L7_6d
- _L7_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L7_3d # no
- bsr.l src_zero # yes
- bra.b _L7_6d
- _L7_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L7_4d # no
- bsr.l t_operr # yes
- bra.b _L7_6d
- _L7_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L7_5d # no
- bsr.l src_qnan # yes
- bra.b _L7_6d
- _L7_5d:
- bsr.l sasind # operand is a DENORM
- _L7_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fasinx_
- _fasinx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L7_2x
- bsr.l sasin # operand is a NORM
- bra.b _L7_6x
- _L7_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L7_3x # no
- bsr.l src_zero # yes
- bra.b _L7_6x
- _L7_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L7_4x # no
- bsr.l t_operr # yes
- bra.b _L7_6x
- _L7_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L7_5x # no
- bsr.l src_qnan # yes
- bra.b _L7_6x
- _L7_5x:
- bsr.l sasind # operand is a DENORM
- _L7_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _fatanhs_
- _fatanhs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L8_2s
- bsr.l satanh # operand is a NORM
- bra.b _L8_6s
- _L8_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L8_3s # no
- bsr.l src_zero # yes
- bra.b _L8_6s
- _L8_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L8_4s # no
- bsr.l t_operr # yes
- bra.b _L8_6s
- _L8_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L8_5s # no
- bsr.l src_qnan # yes
- bra.b _L8_6s
- _L8_5s:
- bsr.l satanhd # operand is a DENORM
- _L8_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fatanhd_
- _fatanhd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L8_2d
- bsr.l satanh # operand is a NORM
- bra.b _L8_6d
- _L8_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L8_3d # no
- bsr.l src_zero # yes
- bra.b _L8_6d
- _L8_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L8_4d # no
- bsr.l t_operr # yes
- bra.b _L8_6d
- _L8_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L8_5d # no
- bsr.l src_qnan # yes
- bra.b _L8_6d
- _L8_5d:
- bsr.l satanhd # operand is a DENORM
- _L8_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fatanhx_
- _fatanhx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L8_2x
- bsr.l satanh # operand is a NORM
- bra.b _L8_6x
- _L8_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L8_3x # no
- bsr.l src_zero # yes
- bra.b _L8_6x
- _L8_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L8_4x # no
- bsr.l t_operr # yes
- bra.b _L8_6x
- _L8_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L8_5x # no
- bsr.l src_qnan # yes
- bra.b _L8_6x
- _L8_5x:
- bsr.l satanhd # operand is a DENORM
- _L8_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _ftans_
- _ftans_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L9_2s
- bsr.l stan # operand is a NORM
- bra.b _L9_6s
- _L9_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L9_3s # no
- bsr.l src_zero # yes
- bra.b _L9_6s
- _L9_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L9_4s # no
- bsr.l t_operr # yes
- bra.b _L9_6s
- _L9_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L9_5s # no
- bsr.l src_qnan # yes
- bra.b _L9_6s
- _L9_5s:
- bsr.l stand # operand is a DENORM
- _L9_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftand_
- _ftand_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L9_2d
- bsr.l stan # operand is a NORM
- bra.b _L9_6d
- _L9_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L9_3d # no
- bsr.l src_zero # yes
- bra.b _L9_6d
- _L9_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L9_4d # no
- bsr.l t_operr # yes
- bra.b _L9_6d
- _L9_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L9_5d # no
- bsr.l src_qnan # yes
- bra.b _L9_6d
- _L9_5d:
- bsr.l stand # operand is a DENORM
- _L9_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftanx_
- _ftanx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L9_2x
- bsr.l stan # operand is a NORM
- bra.b _L9_6x
- _L9_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L9_3x # no
- bsr.l src_zero # yes
- bra.b _L9_6x
- _L9_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L9_4x # no
- bsr.l t_operr # yes
- bra.b _L9_6x
- _L9_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L9_5x # no
- bsr.l src_qnan # yes
- bra.b _L9_6x
- _L9_5x:
- bsr.l stand # operand is a DENORM
- _L9_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _fetoxs_
- _fetoxs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L10_2s
- bsr.l setox # operand is a NORM
- bra.b _L10_6s
- _L10_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L10_3s # no
- bsr.l ld_pone # yes
- bra.b _L10_6s
- _L10_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L10_4s # no
- bsr.l szr_inf # yes
- bra.b _L10_6s
- _L10_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L10_5s # no
- bsr.l src_qnan # yes
- bra.b _L10_6s
- _L10_5s:
- bsr.l setoxd # operand is a DENORM
- _L10_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fetoxd_
- _fetoxd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L10_2d
- bsr.l setox # operand is a NORM
- bra.b _L10_6d
- _L10_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L10_3d # no
- bsr.l ld_pone # yes
- bra.b _L10_6d
- _L10_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L10_4d # no
- bsr.l szr_inf # yes
- bra.b _L10_6d
- _L10_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L10_5d # no
- bsr.l src_qnan # yes
- bra.b _L10_6d
- _L10_5d:
- bsr.l setoxd # operand is a DENORM
- _L10_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fetoxx_
- _fetoxx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L10_2x
- bsr.l setox # operand is a NORM
- bra.b _L10_6x
- _L10_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L10_3x # no
- bsr.l ld_pone # yes
- bra.b _L10_6x
- _L10_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L10_4x # no
- bsr.l szr_inf # yes
- bra.b _L10_6x
- _L10_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L10_5x # no
- bsr.l src_qnan # yes
- bra.b _L10_6x
- _L10_5x:
- bsr.l setoxd # operand is a DENORM
- _L10_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _ftwotoxs_
- _ftwotoxs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L11_2s
- bsr.l stwotox # operand is a NORM
- bra.b _L11_6s
- _L11_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L11_3s # no
- bsr.l ld_pone # yes
- bra.b _L11_6s
- _L11_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L11_4s # no
- bsr.l szr_inf # yes
- bra.b _L11_6s
- _L11_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L11_5s # no
- bsr.l src_qnan # yes
- bra.b _L11_6s
- _L11_5s:
- bsr.l stwotoxd # operand is a DENORM
- _L11_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftwotoxd_
- _ftwotoxd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L11_2d
- bsr.l stwotox # operand is a NORM
- bra.b _L11_6d
- _L11_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L11_3d # no
- bsr.l ld_pone # yes
- bra.b _L11_6d
- _L11_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L11_4d # no
- bsr.l szr_inf # yes
- bra.b _L11_6d
- _L11_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L11_5d # no
- bsr.l src_qnan # yes
- bra.b _L11_6d
- _L11_5d:
- bsr.l stwotoxd # operand is a DENORM
- _L11_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftwotoxx_
- _ftwotoxx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L11_2x
- bsr.l stwotox # operand is a NORM
- bra.b _L11_6x
- _L11_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L11_3x # no
- bsr.l ld_pone # yes
- bra.b _L11_6x
- _L11_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L11_4x # no
- bsr.l szr_inf # yes
- bra.b _L11_6x
- _L11_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L11_5x # no
- bsr.l src_qnan # yes
- bra.b _L11_6x
- _L11_5x:
- bsr.l stwotoxd # operand is a DENORM
- _L11_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _ftentoxs_
- _ftentoxs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L12_2s
- bsr.l stentox # operand is a NORM
- bra.b _L12_6s
- _L12_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L12_3s # no
- bsr.l ld_pone # yes
- bra.b _L12_6s
- _L12_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L12_4s # no
- bsr.l szr_inf # yes
- bra.b _L12_6s
- _L12_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L12_5s # no
- bsr.l src_qnan # yes
- bra.b _L12_6s
- _L12_5s:
- bsr.l stentoxd # operand is a DENORM
- _L12_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftentoxd_
- _ftentoxd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L12_2d
- bsr.l stentox # operand is a NORM
- bra.b _L12_6d
- _L12_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L12_3d # no
- bsr.l ld_pone # yes
- bra.b _L12_6d
- _L12_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L12_4d # no
- bsr.l szr_inf # yes
- bra.b _L12_6d
- _L12_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L12_5d # no
- bsr.l src_qnan # yes
- bra.b _L12_6d
- _L12_5d:
- bsr.l stentoxd # operand is a DENORM
- _L12_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftentoxx_
- _ftentoxx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L12_2x
- bsr.l stentox # operand is a NORM
- bra.b _L12_6x
- _L12_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L12_3x # no
- bsr.l ld_pone # yes
- bra.b _L12_6x
- _L12_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L12_4x # no
- bsr.l szr_inf # yes
- bra.b _L12_6x
- _L12_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L12_5x # no
- bsr.l src_qnan # yes
- bra.b _L12_6x
- _L12_5x:
- bsr.l stentoxd # operand is a DENORM
- _L12_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _flogns_
- _flogns_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L13_2s
- bsr.l slogn # operand is a NORM
- bra.b _L13_6s
- _L13_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L13_3s # no
- bsr.l t_dz2 # yes
- bra.b _L13_6s
- _L13_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L13_4s # no
- bsr.l sopr_inf # yes
- bra.b _L13_6s
- _L13_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L13_5s # no
- bsr.l src_qnan # yes
- bra.b _L13_6s
- _L13_5s:
- bsr.l slognd # operand is a DENORM
- _L13_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flognd_
- _flognd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L13_2d
- bsr.l slogn # operand is a NORM
- bra.b _L13_6d
- _L13_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L13_3d # no
- bsr.l t_dz2 # yes
- bra.b _L13_6d
- _L13_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L13_4d # no
- bsr.l sopr_inf # yes
- bra.b _L13_6d
- _L13_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L13_5d # no
- bsr.l src_qnan # yes
- bra.b _L13_6d
- _L13_5d:
- bsr.l slognd # operand is a DENORM
- _L13_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flognx_
- _flognx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L13_2x
- bsr.l slogn # operand is a NORM
- bra.b _L13_6x
- _L13_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L13_3x # no
- bsr.l t_dz2 # yes
- bra.b _L13_6x
- _L13_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L13_4x # no
- bsr.l sopr_inf # yes
- bra.b _L13_6x
- _L13_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L13_5x # no
- bsr.l src_qnan # yes
- bra.b _L13_6x
- _L13_5x:
- bsr.l slognd # operand is a DENORM
- _L13_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _flog10s_
- _flog10s_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L14_2s
- bsr.l slog10 # operand is a NORM
- bra.b _L14_6s
- _L14_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L14_3s # no
- bsr.l t_dz2 # yes
- bra.b _L14_6s
- _L14_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L14_4s # no
- bsr.l sopr_inf # yes
- bra.b _L14_6s
- _L14_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L14_5s # no
- bsr.l src_qnan # yes
- bra.b _L14_6s
- _L14_5s:
- bsr.l slog10d # operand is a DENORM
- _L14_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flog10d_
- _flog10d_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L14_2d
- bsr.l slog10 # operand is a NORM
- bra.b _L14_6d
- _L14_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L14_3d # no
- bsr.l t_dz2 # yes
- bra.b _L14_6d
- _L14_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L14_4d # no
- bsr.l sopr_inf # yes
- bra.b _L14_6d
- _L14_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L14_5d # no
- bsr.l src_qnan # yes
- bra.b _L14_6d
- _L14_5d:
- bsr.l slog10d # operand is a DENORM
- _L14_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flog10x_
- _flog10x_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L14_2x
- bsr.l slog10 # operand is a NORM
- bra.b _L14_6x
- _L14_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L14_3x # no
- bsr.l t_dz2 # yes
- bra.b _L14_6x
- _L14_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L14_4x # no
- bsr.l sopr_inf # yes
- bra.b _L14_6x
- _L14_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L14_5x # no
- bsr.l src_qnan # yes
- bra.b _L14_6x
- _L14_5x:
- bsr.l slog10d # operand is a DENORM
- _L14_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _flog2s_
- _flog2s_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L15_2s
- bsr.l slog2 # operand is a NORM
- bra.b _L15_6s
- _L15_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L15_3s # no
- bsr.l t_dz2 # yes
- bra.b _L15_6s
- _L15_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L15_4s # no
- bsr.l sopr_inf # yes
- bra.b _L15_6s
- _L15_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L15_5s # no
- bsr.l src_qnan # yes
- bra.b _L15_6s
- _L15_5s:
- bsr.l slog2d # operand is a DENORM
- _L15_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flog2d_
- _flog2d_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L15_2d
- bsr.l slog2 # operand is a NORM
- bra.b _L15_6d
- _L15_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L15_3d # no
- bsr.l t_dz2 # yes
- bra.b _L15_6d
- _L15_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L15_4d # no
- bsr.l sopr_inf # yes
- bra.b _L15_6d
- _L15_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L15_5d # no
- bsr.l src_qnan # yes
- bra.b _L15_6d
- _L15_5d:
- bsr.l slog2d # operand is a DENORM
- _L15_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flog2x_
- _flog2x_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L15_2x
- bsr.l slog2 # operand is a NORM
- bra.b _L15_6x
- _L15_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L15_3x # no
- bsr.l t_dz2 # yes
- bra.b _L15_6x
- _L15_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L15_4x # no
- bsr.l sopr_inf # yes
- bra.b _L15_6x
- _L15_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L15_5x # no
- bsr.l src_qnan # yes
- bra.b _L15_6x
- _L15_5x:
- bsr.l slog2d # operand is a DENORM
- _L15_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _fcoshs_
- _fcoshs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L16_2s
- bsr.l scosh # operand is a NORM
- bra.b _L16_6s
- _L16_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L16_3s # no
- bsr.l ld_pone # yes
- bra.b _L16_6s
- _L16_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L16_4s # no
- bsr.l ld_pinf # yes
- bra.b _L16_6s
- _L16_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L16_5s # no
- bsr.l src_qnan # yes
- bra.b _L16_6s
- _L16_5s:
- bsr.l scoshd # operand is a DENORM
- _L16_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fcoshd_
- _fcoshd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L16_2d
- bsr.l scosh # operand is a NORM
- bra.b _L16_6d
- _L16_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L16_3d # no
- bsr.l ld_pone # yes
- bra.b _L16_6d
- _L16_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L16_4d # no
- bsr.l ld_pinf # yes
- bra.b _L16_6d
- _L16_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L16_5d # no
- bsr.l src_qnan # yes
- bra.b _L16_6d
- _L16_5d:
- bsr.l scoshd # operand is a DENORM
- _L16_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fcoshx_
- _fcoshx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L16_2x
- bsr.l scosh # operand is a NORM
- bra.b _L16_6x
- _L16_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L16_3x # no
- bsr.l ld_pone # yes
- bra.b _L16_6x
- _L16_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L16_4x # no
- bsr.l ld_pinf # yes
- bra.b _L16_6x
- _L16_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L16_5x # no
- bsr.l src_qnan # yes
- bra.b _L16_6x
- _L16_5x:
- bsr.l scoshd # operand is a DENORM
- _L16_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _facoss_
- _facoss_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L17_2s
- bsr.l sacos # operand is a NORM
- bra.b _L17_6s
- _L17_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L17_3s # no
- bsr.l ld_ppi2 # yes
- bra.b _L17_6s
- _L17_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L17_4s # no
- bsr.l t_operr # yes
- bra.b _L17_6s
- _L17_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L17_5s # no
- bsr.l src_qnan # yes
- bra.b _L17_6s
- _L17_5s:
- bsr.l sacosd # operand is a DENORM
- _L17_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _facosd_
- _facosd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L17_2d
- bsr.l sacos # operand is a NORM
- bra.b _L17_6d
- _L17_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L17_3d # no
- bsr.l ld_ppi2 # yes
- bra.b _L17_6d
- _L17_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L17_4d # no
- bsr.l t_operr # yes
- bra.b _L17_6d
- _L17_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L17_5d # no
- bsr.l src_qnan # yes
- bra.b _L17_6d
- _L17_5d:
- bsr.l sacosd # operand is a DENORM
- _L17_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _facosx_
- _facosx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L17_2x
- bsr.l sacos # operand is a NORM
- bra.b _L17_6x
- _L17_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L17_3x # no
- bsr.l ld_ppi2 # yes
- bra.b _L17_6x
- _L17_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L17_4x # no
- bsr.l t_operr # yes
- bra.b _L17_6x
- _L17_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L17_5x # no
- bsr.l src_qnan # yes
- bra.b _L17_6x
- _L17_5x:
- bsr.l sacosd # operand is a DENORM
- _L17_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _fgetexps_
- _fgetexps_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L18_2s
- bsr.l sgetexp # operand is a NORM
- bra.b _L18_6s
- _L18_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L18_3s # no
- bsr.l src_zero # yes
- bra.b _L18_6s
- _L18_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L18_4s # no
- bsr.l t_operr # yes
- bra.b _L18_6s
- _L18_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L18_5s # no
- bsr.l src_qnan # yes
- bra.b _L18_6s
- _L18_5s:
- bsr.l sgetexpd # operand is a DENORM
- _L18_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fgetexpd_
- _fgetexpd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L18_2d
- bsr.l sgetexp # operand is a NORM
- bra.b _L18_6d
- _L18_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L18_3d # no
- bsr.l src_zero # yes
- bra.b _L18_6d
- _L18_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L18_4d # no
- bsr.l t_operr # yes
- bra.b _L18_6d
- _L18_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L18_5d # no
- bsr.l src_qnan # yes
- bra.b _L18_6d
- _L18_5d:
- bsr.l sgetexpd # operand is a DENORM
- _L18_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fgetexpx_
- _fgetexpx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L18_2x
- bsr.l sgetexp # operand is a NORM
- bra.b _L18_6x
- _L18_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L18_3x # no
- bsr.l src_zero # yes
- bra.b _L18_6x
- _L18_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L18_4x # no
- bsr.l t_operr # yes
- bra.b _L18_6x
- _L18_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L18_5x # no
- bsr.l src_qnan # yes
- bra.b _L18_6x
- _L18_5x:
- bsr.l sgetexpd # operand is a DENORM
- _L18_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _fgetmans_
- _fgetmans_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L19_2s
- bsr.l sgetman # operand is a NORM
- bra.b _L19_6s
- _L19_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L19_3s # no
- bsr.l src_zero # yes
- bra.b _L19_6s
- _L19_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L19_4s # no
- bsr.l t_operr # yes
- bra.b _L19_6s
- _L19_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L19_5s # no
- bsr.l src_qnan # yes
- bra.b _L19_6s
- _L19_5s:
- bsr.l sgetmand # operand is a DENORM
- _L19_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fgetmand_
- _fgetmand_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L19_2d
- bsr.l sgetman # operand is a NORM
- bra.b _L19_6d
- _L19_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L19_3d # no
- bsr.l src_zero # yes
- bra.b _L19_6d
- _L19_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L19_4d # no
- bsr.l t_operr # yes
- bra.b _L19_6d
- _L19_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L19_5d # no
- bsr.l src_qnan # yes
- bra.b _L19_6d
- _L19_5d:
- bsr.l sgetmand # operand is a DENORM
- _L19_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fgetmanx_
- _fgetmanx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L19_2x
- bsr.l sgetman # operand is a NORM
- bra.b _L19_6x
- _L19_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L19_3x # no
- bsr.l src_zero # yes
- bra.b _L19_6x
- _L19_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L19_4x # no
- bsr.l t_operr # yes
- bra.b _L19_6x
- _L19_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L19_5x # no
- bsr.l src_qnan # yes
- bra.b _L19_6x
- _L19_5x:
- bsr.l sgetmand # operand is a DENORM
- _L19_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # MONADIC TEMPLATE #
- #########################################################################
- global _fsincoss_
- _fsincoss_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L20_2s
- bsr.l ssincos # operand is a NORM
- bra.b _L20_6s
- _L20_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L20_3s # no
- bsr.l ssincosz # yes
- bra.b _L20_6s
- _L20_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L20_4s # no
- bsr.l ssincosi # yes
- bra.b _L20_6s
- _L20_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L20_5s # no
- bsr.l ssincosqnan # yes
- bra.b _L20_6s
- _L20_5s:
- bsr.l ssincosd # operand is a DENORM
- _L20_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x &0x03,-(%sp) # store off fp0/fp1
- fmovm.x (%sp)+,&0x40 # fp0 now in fp1
- fmovm.x (%sp)+,&0x80 # fp1 now in fp0
- unlk %a6
- rts
-
- global _fsincosd_
- _fsincosd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L20_2d
- bsr.l ssincos # operand is a NORM
- bra.b _L20_6d
- _L20_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L20_3d # no
- bsr.l ssincosz # yes
- bra.b _L20_6d
- _L20_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L20_4d # no
- bsr.l ssincosi # yes
- bra.b _L20_6d
- _L20_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L20_5d # no
- bsr.l ssincosqnan # yes
- bra.b _L20_6d
- _L20_5d:
- bsr.l ssincosd # operand is a DENORM
- _L20_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x &0x03,-(%sp) # store off fp0/fp1
- fmovm.x (%sp)+,&0x40 # fp0 now in fp1
- fmovm.x (%sp)+,&0x80 # fp1 now in fp0
- unlk %a6
- rts
-
- global _fsincosx_
- _fsincosx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L20_2x
- bsr.l ssincos # operand is a NORM
- bra.b _L20_6x
- _L20_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L20_3x # no
- bsr.l ssincosz # yes
- bra.b _L20_6x
- _L20_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L20_4x # no
- bsr.l ssincosi # yes
- bra.b _L20_6x
- _L20_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L20_5x # no
- bsr.l ssincosqnan # yes
- bra.b _L20_6x
- _L20_5x:
- bsr.l ssincosd # operand is a DENORM
- _L20_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x &0x03,-(%sp) # store off fp0/fp1
- fmovm.x (%sp)+,&0x40 # fp0 now in fp1
- fmovm.x (%sp)+,&0x80 # fp1 now in fp0
- unlk %a6
- rts
-
-
- #########################################################################
- # DYADIC TEMPLATE #
- #########################################################################
- global _frems_
- _frems_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl dst
- fmov.x %fp0,FP_DST(%a6)
- lea FP_DST(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- fmov.s 0xc(%a6),%fp0 # load sgl src
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L21_2s
- bsr.l srem_snorm # operand is a NORM
- bra.b _L21_6s
- _L21_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L21_3s # no
- bsr.l srem_szero # yes
- bra.b _L21_6s
- _L21_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L21_4s # no
- bsr.l srem_sinf # yes
- bra.b _L21_6s
- _L21_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L21_5s # no
- bsr.l sop_sqnan # yes
- bra.b _L21_6s
- _L21_5s:
- bsr.l srem_sdnrm # operand is a DENORM
- _L21_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fremd_
- _fremd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl dst
- fmov.x %fp0,FP_DST(%a6)
- lea FP_DST(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- fmov.d 0x10(%a6),%fp0 # load dbl src
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L21_2d
- bsr.l srem_snorm # operand is a NORM
- bra.b _L21_6d
- _L21_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L21_3d # no
- bsr.l srem_szero # yes
- bra.b _L21_6d
- _L21_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L21_4d # no
- bsr.l srem_sinf # yes
- bra.b _L21_6d
- _L21_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L21_5d # no
- bsr.l sop_sqnan # yes
- bra.b _L21_6d
- _L21_5d:
- bsr.l srem_sdnrm # operand is a DENORM
- _L21_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fremx_
- _fremx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_DST(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- lea FP_SRC(%a6),%a0
- mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src
- mov.l 0x14+0x4(%a6),0x4(%a0)
- mov.l 0x14+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L21_2x
- bsr.l srem_snorm # operand is a NORM
- bra.b _L21_6x
- _L21_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L21_3x # no
- bsr.l srem_szero # yes
- bra.b _L21_6x
- _L21_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L21_4x # no
- bsr.l srem_sinf # yes
- bra.b _L21_6x
- _L21_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L21_5x # no
- bsr.l sop_sqnan # yes
- bra.b _L21_6x
- _L21_5x:
- bsr.l srem_sdnrm # operand is a DENORM
- _L21_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # DYADIC TEMPLATE #
- #########################################################################
- global _fmods_
- _fmods_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl dst
- fmov.x %fp0,FP_DST(%a6)
- lea FP_DST(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- fmov.s 0xc(%a6),%fp0 # load sgl src
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L22_2s
- bsr.l smod_snorm # operand is a NORM
- bra.b _L22_6s
- _L22_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L22_3s # no
- bsr.l smod_szero # yes
- bra.b _L22_6s
- _L22_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L22_4s # no
- bsr.l smod_sinf # yes
- bra.b _L22_6s
- _L22_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L22_5s # no
- bsr.l sop_sqnan # yes
- bra.b _L22_6s
- _L22_5s:
- bsr.l smod_sdnrm # operand is a DENORM
- _L22_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fmodd_
- _fmodd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl dst
- fmov.x %fp0,FP_DST(%a6)
- lea FP_DST(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- fmov.d 0x10(%a6),%fp0 # load dbl src
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L22_2d
- bsr.l smod_snorm # operand is a NORM
- bra.b _L22_6d
- _L22_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L22_3d # no
- bsr.l smod_szero # yes
- bra.b _L22_6d
- _L22_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L22_4d # no
- bsr.l smod_sinf # yes
- bra.b _L22_6d
- _L22_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L22_5d # no
- bsr.l sop_sqnan # yes
- bra.b _L22_6d
- _L22_5d:
- bsr.l smod_sdnrm # operand is a DENORM
- _L22_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fmodx_
- _fmodx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_DST(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- lea FP_SRC(%a6),%a0
- mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src
- mov.l 0x14+0x4(%a6),0x4(%a0)
- mov.l 0x14+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L22_2x
- bsr.l smod_snorm # operand is a NORM
- bra.b _L22_6x
- _L22_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L22_3x # no
- bsr.l smod_szero # yes
- bra.b _L22_6x
- _L22_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L22_4x # no
- bsr.l smod_sinf # yes
- bra.b _L22_6x
- _L22_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L22_5x # no
- bsr.l sop_sqnan # yes
- bra.b _L22_6x
- _L22_5x:
- bsr.l smod_sdnrm # operand is a DENORM
- _L22_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # DYADIC TEMPLATE #
- #########################################################################
- global _fscales_
- _fscales_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.s 0x8(%a6),%fp0 # load sgl dst
- fmov.x %fp0,FP_DST(%a6)
- lea FP_DST(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- fmov.s 0xc(%a6),%fp0 # load sgl src
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L23_2s
- bsr.l sscale_snorm # operand is a NORM
- bra.b _L23_6s
- _L23_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L23_3s # no
- bsr.l sscale_szero # yes
- bra.b _L23_6s
- _L23_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L23_4s # no
- bsr.l sscale_sinf # yes
- bra.b _L23_6s
- _L23_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L23_5s # no
- bsr.l sop_sqnan # yes
- bra.b _L23_6s
- _L23_5s:
- bsr.l sscale_sdnrm # operand is a DENORM
- _L23_6s:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fscaled_
- _fscaled_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- fmov.d 0x8(%a6),%fp0 # load dbl dst
- fmov.x %fp0,FP_DST(%a6)
- lea FP_DST(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- fmov.d 0x10(%a6),%fp0 # load dbl src
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L23_2d
- bsr.l sscale_snorm # operand is a NORM
- bra.b _L23_6d
- _L23_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L23_3d # no
- bsr.l sscale_szero # yes
- bra.b _L23_6d
- _L23_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L23_4d # no
- bsr.l sscale_sinf # yes
- bra.b _L23_6d
- _L23_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L23_5d # no
- bsr.l sop_sqnan # yes
- bra.b _L23_6d
- _L23_5d:
- bsr.l sscale_sdnrm # operand is a DENORM
- _L23_6d:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fscalex_
- _fscalex_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
- #
- # copy, convert, and tag input argument
- #
- lea FP_DST(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- lea FP_SRC(%a6),%a0
- mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src
- mov.l 0x14+0x4(%a6),0x4(%a0)
- mov.l 0x14+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L23_2x
- bsr.l sscale_snorm # operand is a NORM
- bra.b _L23_6x
- _L23_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L23_3x # no
- bsr.l sscale_szero # yes
- bra.b _L23_6x
- _L23_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L23_4x # no
- bsr.l sscale_sinf # yes
- bra.b _L23_6x
- _L23_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L23_5x # no
- bsr.l sop_sqnan # yes
- bra.b _L23_6x
- _L23_5x:
- bsr.l sscale_sdnrm # operand is a DENORM
- _L23_6x:
-
- #
- # Result is now in FP0
- #
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
- #########################################################################
- # ssin(): computes the sine of a normalized input #
- # ssind(): computes the sine of a denormalized input #
- # scos(): computes the cosine of a normalized input #
- # scosd(): computes the cosine of a denormalized input #
- # ssincos(): computes the sine and cosine of a normalized input #
- # ssincosd(): computes the sine and cosine of a denormalized input #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # d0 = round precision,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = sin(X) or cos(X) #
- # #
- # For ssincos(X): #
- # fp0 = sin(X) #
- # fp1 = cos(X) #
- # #
- # ACCURACY and MONOTONICITY ******************************************* #
- # The returned result is within 1 ulp in 64 significant bit, i.e. #
- # within 0.5001 ulp to 53 bits if the result is subsequently #
- # rounded to double precision. The result is provably monotonic #
- # in double precision. #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # SIN and COS: #
- # 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. #
- # #
- # 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. #
- # #
- # 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
- # k = N mod 4, so in particular, k = 0,1,2,or 3. #
- # Overwrite k by k := k + AdjN. #
- # #
- # 4. If k is even, go to 6. #
- # #
- # 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. #
- # Return sgn*cos(r) where cos(r) is approximated by an #
- # even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), #
- # s = r*r. #
- # Exit. #
- # #
- # 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) #
- # where sin(r) is approximated by an odd polynomial in r #
- # r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. #
- # Exit. #
- # #
- # 7. If |X| > 1, go to 9. #
- # #
- # 8. (|X|<2**(-40)) If SIN is invoked, return X; #
- # otherwise return 1. #
- # #
- # 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
- # go back to 3. #
- # #
- # SINCOS: #
- # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
- # #
- # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
- # k = N mod 4, so in particular, k = 0,1,2,or 3. #
- # #
- # 3. If k is even, go to 5. #
- # #
- # 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. #
- # j1 exclusive or with the l.s.b. of k. #
- # sgn1 := (-1)**j1, sgn2 := (-1)**j2. #
- # SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where #
- # sin(r) and cos(r) are computed as odd and even #
- # polynomials in r, respectively. Exit #
- # #
- # 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. #
- # SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where #
- # sin(r) and cos(r) are computed as odd and even #
- # polynomials in r, respectively. Exit #
- # #
- # 6. If |X| > 1, go to 8. #
- # #
- # 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. #
- # #
- # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
- # go back to 2. #
- # #
- #########################################################################
-
- SINA7: long 0xBD6AAA77,0xCCC994F5
- SINA6: long 0x3DE61209,0x7AAE8DA1
- SINA5: long 0xBE5AE645,0x2A118AE4
- SINA4: long 0x3EC71DE3,0xA5341531
- SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
- SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000
- SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
-
- COSB8: long 0x3D2AC4D0,0xD6011EE3
- COSB7: long 0xBDA9396F,0x9F45AC19
- COSB6: long 0x3E21EED9,0x0612C972
- COSB5: long 0xBE927E4F,0xB79D9FCF
- COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
- COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
- COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
- COSB1: long 0xBF000000
-
- set INARG,FP_SCR0
-
- set X,FP_SCR0
- # set XDCARE,X+2
- set XFRAC,X+4
-
- set RPRIME,FP_SCR0
- set SPRIME,FP_SCR1
-
- set POSNEG1,L_SCR1
- set TWOTO63,L_SCR1
-
- set ENDFLAG,L_SCR2
- set INT,L_SCR2
-
- set ADJN,L_SCR3
-
- ############################################
- global ssin
- ssin:
- mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0
- bra.b SINBGN
-
- ############################################
- global scos
- scos:
- mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1
-
- ############################################
- SINBGN:
- #--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
-
- fmov.x (%a0),%fp0 # LOAD INPUT
- fmov.x %fp0,X(%a6) # save input at X
-
- # "COMPACTIFY" X
- mov.l (%a0),%d1 # put exp in hi word
- mov.w 4(%a0),%d1 # fetch hi(man)
- and.l &0x7FFFFFFF,%d1 # strip sign
-
- cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)?
- bge.b SOK1 # no
- bra.w SINSM # yes; input is very small
-
- SOK1:
- cmp.l %d1,&0x4004BC7E # is |X| < 15 PI?
- blt.b SINMAIN # no
- bra.w SREDUCEX # yes; input is very large
-
- #--THIS IS THE USUAL CASE, |X| <= 15 PI.
- #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
- SINMAIN:
- fmov.x %fp0,%fp1
- fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
-
- lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
-
- fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER
-
- mov.l INT(%a6),%d1 # make a copy of N
- asl.l &4,%d1 # N *= 16
- add.l %d1,%a1 # tbl_addr = a1 + (N*16)
-
- # A1 IS THE ADDRESS OF N*PIBY2
- # ...WHICH IS IN TWO PIECES Y1 & Y2
- fsub.x (%a1)+,%fp0 # X-Y1
- fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2
-
- SINCONT:
- #--continuation from REDUCEX
-
- #--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
- mov.l INT(%a6),%d1
- add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN
- ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE
- cmp.l %d1,&0
- blt.w COSPOLY
-
- #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
- #--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
- #--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
- #--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
- #--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
- #--WHERE T=S*S.
- #--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
- #--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
- SINPOLY:
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmov.x %fp0,X(%a6) # X IS R
- fmul.x %fp0,%fp0 # FP0 IS S
-
- fmov.d SINA7(%pc),%fp3
- fmov.d SINA6(%pc),%fp2
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS T
-
- ror.l &1,%d1
- and.l &0x80000000,%d1
- # ...LEAST SIG. BIT OF D0 IN SIGN POSITION
- eor.l %d1,X(%a6) # X IS NOW R'= SGN*R
-
- fmul.x %fp1,%fp3 # TA7
- fmul.x %fp1,%fp2 # TA6
-
- fadd.d SINA5(%pc),%fp3 # A5+TA7
- fadd.d SINA4(%pc),%fp2 # A4+TA6
-
- fmul.x %fp1,%fp3 # T(A5+TA7)
- fmul.x %fp1,%fp2 # T(A4+TA6)
-
- fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7)
- fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6)
-
- fmul.x %fp3,%fp1 # T(A3+T(A5+TA7))
-
- fmul.x %fp0,%fp2 # S(A2+T(A4+TA6))
- fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7))
- fmul.x X(%a6),%fp0 # R'*S
-
- fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
-
- fmul.x %fp1,%fp0 # SIN(R')-R'
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- fadd.x X(%a6),%fp0 # last inst - possible exception set
- bra t_inx2
-
- #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
- #--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY
- #--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
- #--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
- #--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
- #--WHERE T=S*S.
- #--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
- #--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
- #--AND IS THEREFORE STORED AS SINGLE PRECISION.
- COSPOLY:
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmul.x %fp0,%fp0 # FP0 IS S
-
- fmov.d COSB8(%pc),%fp2
- fmov.d COSB7(%pc),%fp3
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS T
-
- fmov.x %fp0,X(%a6) # X IS S
- ror.l &1,%d1
- and.l &0x80000000,%d1
- # ...LEAST SIG. BIT OF D0 IN SIGN POSITION
-
- fmul.x %fp1,%fp2 # TB8
-
- eor.l %d1,X(%a6) # X IS NOW S'= SGN*S
- and.l &0x80000000,%d1
-
- fmul.x %fp1,%fp3 # TB7
-
- or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE
- mov.l %d1,POSNEG1(%a6)
-
- fadd.d COSB6(%pc),%fp2 # B6+TB8
- fadd.d COSB5(%pc),%fp3 # B5+TB7
-
- fmul.x %fp1,%fp2 # T(B6+TB8)
- fmul.x %fp1,%fp3 # T(B5+TB7)
-
- fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8)
- fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7)
-
- fmul.x %fp1,%fp2 # T(B4+T(B6+TB8))
- fmul.x %fp3,%fp1 # T(B3+T(B5+TB7))
-
- fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8))
- fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7))
-
- fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8)))
-
- fadd.x %fp1,%fp0
-
- fmul.x X(%a6),%fp0
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set
- bra t_inx2
-
- ##############################################
-
- # SINe: Big OR Small?
- #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
- #--IF |X| < 2**(-40), RETURN X OR 1.
- SINBORS:
- cmp.l %d1,&0x3FFF8000
- bgt.l SREDUCEX
-
- SINSM:
- mov.l ADJN(%a6),%d1
- cmp.l %d1,&0
- bgt.b COSTINY
-
- # here, the operation may underflow iff the precision is sgl or dbl.
- # extended denorms are handled through another entry point.
- SINTINY:
- # mov.w &0x0000,XDCARE(%a6) # JUST IN CASE
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x X(%a6),%fp0 # last inst - possible exception set
- bra t_catch
-
- COSTINY:
- fmov.s &0x3F800000,%fp0 # fp0 = 1.0
- fmov.l %d0,%fpcr # restore users round mode,prec
- fadd.s &0x80800000,%fp0 # last inst - possible exception set
- bra t_pinx2
-
- ################################################
- global ssind
- #--SIN(X) = X FOR DENORMALIZED X
- ssind:
- bra t_extdnrm
-
- ############################################
- global scosd
- #--COS(X) = 1 FOR DENORMALIZED X
- scosd:
- fmov.s &0x3F800000,%fp0 # fp0 = 1.0
- bra t_pinx2
-
- ##################################################
-
- global ssincos
- ssincos:
- #--SET ADJN TO 4
- mov.l &4,ADJN(%a6)
-
- fmov.x (%a0),%fp0 # LOAD INPUT
- fmov.x %fp0,X(%a6)
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1 # COMPACTIFY X
-
- cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)?
- bge.b SCOK1
- bra.w SCSM
-
- SCOK1:
- cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
- blt.b SCMAIN
- bra.w SREDUCEX
-
-
- #--THIS IS THE USUAL CASE, |X| <= 15 PI.
- #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
- SCMAIN:
- fmov.x %fp0,%fp1
-
- fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
-
- lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
-
- fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER
-
- mov.l INT(%a6),%d1
- asl.l &4,%d1
- add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2
-
- fsub.x (%a1)+,%fp0 # X-Y1
- fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2
-
- SCCONT:
- #--continuation point from REDUCEX
-
- mov.l INT(%a6),%d1
- ror.l &1,%d1
- cmp.l %d1,&0 # D0 < 0 IFF N IS ODD
- bge.w NEVEN
-
- SNODD:
- #--REGISTERS SAVED SO FAR: D0, A0, FP2.
- fmovm.x &0x04,-(%sp) # save fp2
-
- fmov.x %fp0,RPRIME(%a6)
- fmul.x %fp0,%fp0 # FP0 IS S = R*R
- fmov.d SINA7(%pc),%fp1 # A7
- fmov.d COSB8(%pc),%fp2 # B8
- fmul.x %fp0,%fp1 # SA7
- fmul.x %fp0,%fp2 # SB8
-
- mov.l %d2,-(%sp)
- mov.l %d1,%d2
- ror.l &1,%d2
- and.l &0x80000000,%d2
- eor.l %d1,%d2
- and.l &0x80000000,%d2
-
- fadd.d SINA6(%pc),%fp1 # A6+SA7
- fadd.d COSB7(%pc),%fp2 # B7+SB8
-
- fmul.x %fp0,%fp1 # S(A6+SA7)
- eor.l %d2,RPRIME(%a6)
- mov.l (%sp)+,%d2
- fmul.x %fp0,%fp2 # S(B7+SB8)
- ror.l &1,%d1
- and.l &0x80000000,%d1
- mov.l &0x3F800000,POSNEG1(%a6)
- eor.l %d1,POSNEG1(%a6)
-
- fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7)
- fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8)
-
- fmul.x %fp0,%fp1 # S(A5+S(A6+SA7))
- fmul.x %fp0,%fp2 # S(B6+S(B7+SB8))
- fmov.x %fp0,SPRIME(%a6)
-
- fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7))
- eor.l %d1,SPRIME(%a6)
- fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8))
-
- fmul.x %fp0,%fp1 # S(A4+...)
- fmul.x %fp0,%fp2 # S(B5+...)
-
- fadd.d SINA3(%pc),%fp1 # A3+S(A4+...)
- fadd.d COSB4(%pc),%fp2 # B4+S(B5+...)
-
- fmul.x %fp0,%fp1 # S(A3+...)
- fmul.x %fp0,%fp2 # S(B4+...)
-
- fadd.x SINA2(%pc),%fp1 # A2+S(A3+...)
- fadd.x COSB3(%pc),%fp2 # B3+S(B4+...)
-
- fmul.x %fp0,%fp1 # S(A2+...)
- fmul.x %fp0,%fp2 # S(B3+...)
-
- fadd.x SINA1(%pc),%fp1 # A1+S(A2+...)
- fadd.x COSB2(%pc),%fp2 # B2+S(B3+...)
-
- fmul.x %fp0,%fp1 # S(A1+...)
- fmul.x %fp2,%fp0 # S(B2+...)
-
- fmul.x RPRIME(%a6),%fp1 # R'S(A1+...)
- fadd.s COSB1(%pc),%fp0 # B1+S(B2...)
- fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...))
-
- fmovm.x (%sp)+,&0x20 # restore fp2
-
- fmov.l %d0,%fpcr
- fadd.x RPRIME(%a6),%fp1 # COS(X)
- bsr sto_cos # store cosine result
- fadd.s POSNEG1(%a6),%fp0 # SIN(X)
- bra t_inx2
-
- NEVEN:
- #--REGISTERS SAVED SO FAR: FP2.
- fmovm.x &0x04,-(%sp) # save fp2
-
- fmov.x %fp0,RPRIME(%a6)
- fmul.x %fp0,%fp0 # FP0 IS S = R*R
-
- fmov.d COSB8(%pc),%fp1 # B8
- fmov.d SINA7(%pc),%fp2 # A7
-
- fmul.x %fp0,%fp1 # SB8
- fmov.x %fp0,SPRIME(%a6)
- fmul.x %fp0,%fp2 # SA7
-
- ror.l &1,%d1
- and.l &0x80000000,%d1
-
- fadd.d COSB7(%pc),%fp1 # B7+SB8
- fadd.d SINA6(%pc),%fp2 # A6+SA7
-
- eor.l %d1,RPRIME(%a6)
- eor.l %d1,SPRIME(%a6)
-
- fmul.x %fp0,%fp1 # S(B7+SB8)
-
- or.l &0x3F800000,%d1
- mov.l %d1,POSNEG1(%a6)
-
- fmul.x %fp0,%fp2 # S(A6+SA7)
-
- fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8)
- fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7)
-
- fmul.x %fp0,%fp1 # S(B6+S(B7+SB8))
- fmul.x %fp0,%fp2 # S(A5+S(A6+SA7))
-
- fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8))
- fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7))
-
- fmul.x %fp0,%fp1 # S(B5+...)
- fmul.x %fp0,%fp2 # S(A4+...)
-
- fadd.d COSB4(%pc),%fp1 # B4+S(B5+...)
- fadd.d SINA3(%pc),%fp2 # A3+S(A4+...)
-
- fmul.x %fp0,%fp1 # S(B4+...)
- fmul.x %fp0,%fp2 # S(A3+...)
-
- fadd.x COSB3(%pc),%fp1 # B3+S(B4+...)
- fadd.x SINA2(%pc),%fp2 # A2+S(A3+...)
-
- fmul.x %fp0,%fp1 # S(B3+...)
- fmul.x %fp0,%fp2 # S(A2+...)
-
- fadd.x COSB2(%pc),%fp1 # B2+S(B3+...)
- fadd.x SINA1(%pc),%fp2 # A1+S(A2+...)
-
- fmul.x %fp0,%fp1 # S(B2+...)
- fmul.x %fp2,%fp0 # s(a1+...)
-
-
- fadd.s COSB1(%pc),%fp1 # B1+S(B2...)
- fmul.x RPRIME(%a6),%fp0 # R'S(A1+...)
- fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...))
-
- fmovm.x (%sp)+,&0x20 # restore fp2
-
- fmov.l %d0,%fpcr
- fadd.s POSNEG1(%a6),%fp1 # COS(X)
- bsr sto_cos # store cosine result
- fadd.x RPRIME(%a6),%fp0 # SIN(X)
- bra t_inx2
-
- ################################################
-
- SCBORS:
- cmp.l %d1,&0x3FFF8000
- bgt.w SREDUCEX
-
- ################################################
-
- SCSM:
- # mov.w &0x0000,XDCARE(%a6)
- fmov.s &0x3F800000,%fp1
-
- fmov.l %d0,%fpcr
- fsub.s &0x00800000,%fp1
- bsr sto_cos # store cosine result
- fmov.l %fpcr,%d0 # d0 must have fpcr,too
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x X(%a6),%fp0
- bra t_catch
-
- ##############################################
-
- global ssincosd
- #--SIN AND COS OF X FOR DENORMALIZED X
- ssincosd:
- mov.l %d0,-(%sp) # save d0
- fmov.s &0x3F800000,%fp1
- bsr sto_cos # store cosine result
- mov.l (%sp)+,%d0 # restore d0
- bra t_extdnrm
-
- ############################################
-
- #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
- #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
- #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
- SREDUCEX:
- fmovm.x &0x3c,-(%sp) # save {fp2-fp5}
- mov.l %d2,-(%sp) # save d2
- fmov.s &0x00000000,%fp1 # fp1 = 0
-
- #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
- #--there is a danger of unwanted overflow in first LOOP iteration. In this
- #--case, reduce argument by one remainder step to make subsequent reduction
- #--safe.
- cmp.l %d1,&0x7ffeffff # is arg dangerously large?
- bne.b SLOOP # no
-
- # yes; create 2**16383*PI/2
- mov.w &0x7ffe,FP_SCR0_EX(%a6)
- mov.l &0xc90fdaa2,FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6)
-
- # create low half of 2**16383*PI/2 at FP_SCR1
- mov.w &0x7fdc,FP_SCR1_EX(%a6)
- mov.l &0x85a308d3,FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6)
-
- ftest.x %fp0 # test sign of argument
- fblt.w sred_neg
-
- or.b &0x80,FP_SCR0_EX(%a6) # positive arg
- or.b &0x80,FP_SCR1_EX(%a6)
- sred_neg:
- fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact
- fmov.x %fp0,%fp1 # save high result in fp1
- fadd.x FP_SCR1(%a6),%fp0 # low part of reduction
- fsub.x %fp0,%fp1 # determine low component of result
- fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument.
-
- #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
- #--integer quotient will be stored in N
- #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
- SLOOP:
- fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2
- mov.w INARG(%a6),%d1
- mov.l %d1,%a1 # save a copy of D0
- and.l &0x00007FFF,%d1
- sub.l &0x00003FFF,%d1 # d0 = K
- cmp.l %d1,&28
- ble.b SLASTLOOP
- SCONTLOOP:
- sub.l &27,%d1 # d0 = L := K-27
- mov.b &0,ENDFLAG(%a6)
- bra.b SWORK
- SLASTLOOP:
- clr.l %d1 # d0 = L := 0
- mov.b &1,ENDFLAG(%a6)
-
- SWORK:
- #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
- #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
-
- #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
- #--2**L * (PIby2_1), 2**L * (PIby2_2)
-
- mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
- sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
-
- mov.l &0xA2F9836E,FP_SCR0_HI(%a6)
- mov.l &0x4E44152A,FP_SCR0_LO(%a6)
- mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
-
- fmov.x %fp0,%fp2
- fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
-
- #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
- #--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
- #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
- #--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
- #--US THE DESIRED VALUE IN FLOATING POINT.
- mov.l %a1,%d2
- swap %d2
- and.l &0x80000000,%d2
- or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL
- mov.l %d2,TWOTO63(%a6)
- fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED
- fsub.s TWOTO63(%a6),%fp2 # fp2 = N
- # fint.x %fp2
-
- #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
- mov.l %d1,%d2 # d2 = L
-
- add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
- mov.w %d2,FP_SCR0_EX(%a6)
- mov.l &0xC90FDAA2,FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1
-
- add.l &0x00003FDD,%d1
- mov.w %d1,FP_SCR1_EX(%a6)
- mov.l &0x85A308D3,FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2
-
- mov.b ENDFLAG(%a6),%d1
-
- #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
- #--P2 = 2**(L) * Piby2_2
- fmov.x %fp2,%fp4 # fp4 = N
- fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1
- fmov.x %fp2,%fp5 # fp5 = N
- fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2
- fmov.x %fp4,%fp3 # fp3 = W = N*P1
-
- #--we want P+p = W+w but |p| <= half ulp of P
- #--Then, we need to compute A := R-P and a := r-p
- fadd.x %fp5,%fp3 # fp3 = P
- fsub.x %fp3,%fp4 # fp4 = W-P
-
- fsub.x %fp3,%fp0 # fp0 = A := R - P
- fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w
-
- fmov.x %fp0,%fp3 # fp3 = A
- fsub.x %fp4,%fp1 # fp1 = a := r - p
-
- #--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
- #--|r| <= half ulp of R.
- fadd.x %fp1,%fp0 # fp0 = R := A+a
- #--No need to calculate r if this is the last loop
- cmp.b %d1,&0
- bgt.w SRESTORE
-
- #--Need to calculate r
- fsub.x %fp0,%fp3 # fp3 = A-R
- fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a
- bra.w SLOOP
-
- SRESTORE:
- fmov.l %fp2,INT(%a6)
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x (%sp)+,&0x3c # restore {fp2-fp5}
-
- mov.l ADJN(%a6),%d1
- cmp.l %d1,&4
-
- blt.w SINCONT
- bra.w SCCONT
-
- #########################################################################
- # stan(): computes the tangent of a normalized input #
- # stand(): computes the tangent of a denormalized input #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # d0 = round precision,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = tan(X) #
- # #
- # ACCURACY and MONOTONICITY ******************************************* #
- # The returned result is within 3 ulp in 64 significant bit, i.e. #
- # within 0.5001 ulp to 53 bits if the result is subsequently #
- # rounded to double precision. The result is provably monotonic #
- # in double precision. #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
- # #
- # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
- # k = N mod 2, so in particular, k = 0 or 1. #
- # #
- # 3. If k is odd, go to 5. #
- # #
- # 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a #
- # rational function U/V where #
- # U = r + r*s*(P1 + s*(P2 + s*P3)), and #
- # V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. #
- # Exit. #
- # #
- # 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by #
- # a rational function U/V where #
- # U = r + r*s*(P1 + s*(P2 + s*P3)), and #
- # V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, #
- # -Cot(r) = -V/U. Exit. #
- # #
- # 6. If |X| > 1, go to 8. #
- # #
- # 7. (|X|<2**(-40)) Tan(X) = X. Exit. #
- # #
- # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back #
- # to 2. #
- # #
- #########################################################################
-
- TANQ4:
- long 0x3EA0B759,0xF50F8688
- TANP3:
- long 0xBEF2BAA5,0xA8924F04
-
- TANQ3:
- long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
-
- TANP2:
- long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
-
- TANQ2:
- long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
-
- TANP1:
- long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
-
- TANQ1:
- long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
-
- INVTWOPI:
- long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
-
- TWOPI1:
- long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
- TWOPI2:
- long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
-
- #--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
- #--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
- #--MOST 69 BITS LONG.
- # global PITBL
- PITBL:
- long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
- long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
- long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
- long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000
- long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
- long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
- long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
- long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
- long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
- long 0xC0040000,0x90836524,0x88034B96,0x20B00000
- long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
- long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
- long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
- long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
- long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
- long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
- long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
- long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
- long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
- long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
- long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
- long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
- long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
- long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
- long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
- long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
- long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
- long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
- long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
- long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
- long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
- long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
- long 0x00000000,0x00000000,0x00000000,0x00000000
- long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
- long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
- long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
- long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
- long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
- long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
- long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
- long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
- long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
- long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
- long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000
- long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
- long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
- long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
- long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
- long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
- long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
- long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
- long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
- long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
- long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
- long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000
- long 0x40040000,0x90836524,0x88034B96,0xA0B00000
- long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
- long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
- long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
- long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
- long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
- long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000
- long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
- long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
- long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
-
- set INARG,FP_SCR0
-
- set TWOTO63,L_SCR1
- set INT,L_SCR1
- set ENDFLAG,L_SCR2
-
- global stan
- stan:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
-
- cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)?
- bge.b TANOK1
- bra.w TANSM
- TANOK1:
- cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
- blt.b TANMAIN
- bra.w REDUCEX
-
- TANMAIN:
- #--THIS IS THE USUAL CASE, |X| <= 15 PI.
- #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
- fmov.x %fp0,%fp1
- fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
-
- lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
-
- fmov.l %fp1,%d1 # CONVERT TO INTEGER
-
- asl.l &4,%d1
- add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2
-
- fsub.x (%a1)+,%fp0 # X-Y1
-
- fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2
-
- ror.l &5,%d1
- and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0
-
- TANCONT:
- fmovm.x &0x0c,-(%sp) # save fp2,fp3
-
- cmp.l %d1,&0
- blt.w NODD
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # S = R*R
-
- fmov.d TANQ4(%pc),%fp3
- fmov.d TANP3(%pc),%fp2
-
- fmul.x %fp1,%fp3 # SQ4
- fmul.x %fp1,%fp2 # SP3
-
- fadd.d TANQ3(%pc),%fp3 # Q3+SQ4
- fadd.x TANP2(%pc),%fp2 # P2+SP3
-
- fmul.x %fp1,%fp3 # S(Q3+SQ4)
- fmul.x %fp1,%fp2 # S(P2+SP3)
-
- fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4)
- fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3)
-
- fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4))
- fmul.x %fp1,%fp2 # S(P1+S(P2+SP3))
-
- fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4))
- fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3))
-
- fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4)))
-
- fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3))
-
- fadd.s &0x3F800000,%fp1 # 1+S(Q1+...)
-
- fmovm.x (%sp)+,&0x30 # restore fp2,fp3
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- fdiv.x %fp1,%fp0 # last inst - possible exception set
- bra t_inx2
-
- NODD:
- fmov.x %fp0,%fp1
- fmul.x %fp0,%fp0 # S = R*R
-
- fmov.d TANQ4(%pc),%fp3
- fmov.d TANP3(%pc),%fp2
-
- fmul.x %fp0,%fp3 # SQ4
- fmul.x %fp0,%fp2 # SP3
-
- fadd.d TANQ3(%pc),%fp3 # Q3+SQ4
- fadd.x TANP2(%pc),%fp2 # P2+SP3
-
- fmul.x %fp0,%fp3 # S(Q3+SQ4)
- fmul.x %fp0,%fp2 # S(P2+SP3)
-
- fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4)
- fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3)
-
- fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4))
- fmul.x %fp0,%fp2 # S(P1+S(P2+SP3))
-
- fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4))
- fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3))
-
- fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4)))
-
- fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3))
- fadd.s &0x3F800000,%fp0 # 1+S(Q1+...)
-
- fmovm.x (%sp)+,&0x30 # restore fp2,fp3
-
- fmov.x %fp1,-(%sp)
- eor.l &0x80000000,(%sp)
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- fdiv.x (%sp)+,%fp0 # last inst - possible exception set
- bra t_inx2
-
- TANBORS:
- #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
- #--IF |X| < 2**(-40), RETURN X OR 1.
- cmp.l %d1,&0x3FFF8000
- bgt.b REDUCEX
-
- TANSM:
- fmov.x %fp0,-(%sp)
- fmov.l %d0,%fpcr # restore users round mode,prec
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x (%sp)+,%fp0 # last inst - posibble exception set
- bra t_catch
-
- global stand
- #--TAN(X) = X FOR DENORMALIZED X
- stand:
- bra t_extdnrm
-
- #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
- #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
- #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
- REDUCEX:
- fmovm.x &0x3c,-(%sp) # save {fp2-fp5}
- mov.l %d2,-(%sp) # save d2
- fmov.s &0x00000000,%fp1 # fp1 = 0
-
- #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
- #--there is a danger of unwanted overflow in first LOOP iteration. In this
- #--case, reduce argument by one remainder step to make subsequent reduction
- #--safe.
- cmp.l %d1,&0x7ffeffff # is arg dangerously large?
- bne.b LOOP # no
-
- # yes; create 2**16383*PI/2
- mov.w &0x7ffe,FP_SCR0_EX(%a6)
- mov.l &0xc90fdaa2,FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6)
-
- # create low half of 2**16383*PI/2 at FP_SCR1
- mov.w &0x7fdc,FP_SCR1_EX(%a6)
- mov.l &0x85a308d3,FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6)
-
- ftest.x %fp0 # test sign of argument
- fblt.w red_neg
-
- or.b &0x80,FP_SCR0_EX(%a6) # positive arg
- or.b &0x80,FP_SCR1_EX(%a6)
- red_neg:
- fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact
- fmov.x %fp0,%fp1 # save high result in fp1
- fadd.x FP_SCR1(%a6),%fp0 # low part of reduction
- fsub.x %fp0,%fp1 # determine low component of result
- fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument.
-
- #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
- #--integer quotient will be stored in N
- #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
- LOOP:
- fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2
- mov.w INARG(%a6),%d1
- mov.l %d1,%a1 # save a copy of D0
- and.l &0x00007FFF,%d1
- sub.l &0x00003FFF,%d1 # d0 = K
- cmp.l %d1,&28
- ble.b LASTLOOP
- CONTLOOP:
- sub.l &27,%d1 # d0 = L := K-27
- mov.b &0,ENDFLAG(%a6)
- bra.b WORK
- LASTLOOP:
- clr.l %d1 # d0 = L := 0
- mov.b &1,ENDFLAG(%a6)
-
- WORK:
- #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
- #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
-
- #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
- #--2**L * (PIby2_1), 2**L * (PIby2_2)
-
- mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
- sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
-
- mov.l &0xA2F9836E,FP_SCR0_HI(%a6)
- mov.l &0x4E44152A,FP_SCR0_LO(%a6)
- mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
-
- fmov.x %fp0,%fp2
- fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
-
- #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
- #--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
- #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
- #--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
- #--US THE DESIRED VALUE IN FLOATING POINT.
- mov.l %a1,%d2
- swap %d2
- and.l &0x80000000,%d2
- or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL
- mov.l %d2,TWOTO63(%a6)
- fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED
- fsub.s TWOTO63(%a6),%fp2 # fp2 = N
- # fintrz.x %fp2,%fp2
-
- #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
- mov.l %d1,%d2 # d2 = L
-
- add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
- mov.w %d2,FP_SCR0_EX(%a6)
- mov.l &0xC90FDAA2,FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1
-
- add.l &0x00003FDD,%d1
- mov.w %d1,FP_SCR1_EX(%a6)
- mov.l &0x85A308D3,FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2
-
- mov.b ENDFLAG(%a6),%d1
-
- #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
- #--P2 = 2**(L) * Piby2_2
- fmov.x %fp2,%fp4 # fp4 = N
- fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1
- fmov.x %fp2,%fp5 # fp5 = N
- fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2
- fmov.x %fp4,%fp3 # fp3 = W = N*P1
-
- #--we want P+p = W+w but |p| <= half ulp of P
- #--Then, we need to compute A := R-P and a := r-p
- fadd.x %fp5,%fp3 # fp3 = P
- fsub.x %fp3,%fp4 # fp4 = W-P
-
- fsub.x %fp3,%fp0 # fp0 = A := R - P
- fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w
-
- fmov.x %fp0,%fp3 # fp3 = A
- fsub.x %fp4,%fp1 # fp1 = a := r - p
-
- #--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
- #--|r| <= half ulp of R.
- fadd.x %fp1,%fp0 # fp0 = R := A+a
- #--No need to calculate r if this is the last loop
- cmp.b %d1,&0
- bgt.w RESTORE
-
- #--Need to calculate r
- fsub.x %fp0,%fp3 # fp3 = A-R
- fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a
- bra.w LOOP
-
- RESTORE:
- fmov.l %fp2,INT(%a6)
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x (%sp)+,&0x3c # restore {fp2-fp5}
-
- mov.l INT(%a6),%d1
- ror.l &1,%d1
-
- bra.w TANCONT
-
- #########################################################################
- # satan(): computes the arctangent of a normalized number #
- # satand(): computes the arctangent of a denormalized number #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # d0 = round precision,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = arctan(X) #
- # #
- # ACCURACY and MONOTONICITY ******************************************* #
- # The returned result is within 2 ulps in 64 significant bit, #
- # i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
- # rounded to double precision. The result is provably monotonic #
- # in double precision. #
- # #
- # ALGORITHM *********************************************************** #
- # Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. #
- # #
- # Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. #
- # Note that k = -4, -3,..., or 3. #
- # Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 #
- # significant bits of X with a bit-1 attached at the 6-th #
- # bit position. Define u to be u = (X-F) / (1 + X*F). #
- # #
- # Step 3. Approximate arctan(u) by a polynomial poly. #
- # #
- # Step 4. Return arctan(F) + poly, arctan(F) is fetched from a #
- # table of values calculated beforehand. Exit. #
- # #
- # Step 5. If |X| >= 16, go to Step 7. #
- # #
- # Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. #
- # #
- # Step 7. Define X' = -1/X. Approximate arctan(X') by an odd #
- # polynomial in X'. #
- # Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. #
- # #
- #########################################################################
-
- ATANA3: long 0xBFF6687E,0x314987D8
- ATANA2: long 0x4002AC69,0x34A26DB3
- ATANA1: long 0xBFC2476F,0x4E1DA28E
-
- ATANB6: long 0x3FB34444,0x7F876989
- ATANB5: long 0xBFB744EE,0x7FAF45DB
- ATANB4: long 0x3FBC71C6,0x46940220
- ATANB3: long 0xBFC24924,0x921872F9
- ATANB2: long 0x3FC99999,0x99998FA9
- ATANB1: long 0xBFD55555,0x55555555
-
- ATANC5: long 0xBFB70BF3,0x98539E6A
- ATANC4: long 0x3FBC7187,0x962D1D7D
- ATANC3: long 0xBFC24924,0x827107B8
- ATANC2: long 0x3FC99999,0x9996263E
- ATANC1: long 0xBFD55555,0x55555536
-
- PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
- NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000
-
- PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000
- NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000
-
- ATANTBL:
- long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000
- long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000
- long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000
- long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000
- long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000
- long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000
- long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000
- long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000
- long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000
- long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000
- long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000
- long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000
- long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000
- long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000
- long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000
- long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000
- long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000
- long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000
- long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000
- long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000
- long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000
- long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000
- long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000
- long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000
- long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000
- long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000
- long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000
- long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000
- long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000
- long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000
- long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000
- long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000
- long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000
- long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000
- long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000
- long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000
- long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000
- long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000
- long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000
- long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000
- long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000
- long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000
- long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000
- long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000
- long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000
- long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000
- long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000
- long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000
- long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000
- long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000
- long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000
- long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000
- long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000
- long 0x3FFE0000,0x97731420,0x365E538C,0x00000000
- long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000
- long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000
- long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000
- long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000
- long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000
- long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000
- long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000
- long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000
- long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000
- long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000
- long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000
- long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000
- long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000
- long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000
- long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000
- long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000
- long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000
- long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000
- long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000
- long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000
- long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000
- long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000
- long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000
- long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000
- long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000
- long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000
- long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000
- long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000
- long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000
- long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000
- long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000
- long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000
- long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000
- long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000
- long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000
- long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000
- long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000
- long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000
- long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000
- long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000
- long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000
- long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000
- long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000
- long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000
- long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000
- long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000
- long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000
- long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000
- long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000
- long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000
- long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000
- long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000
- long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000
- long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000
- long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000
- long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000
- long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000
- long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000
- long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000
- long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000
- long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000
- long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000
- long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000
- long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000
- long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000
- long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000
- long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000
- long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000
- long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000
- long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000
- long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000
- long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000
- long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000
- long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000
-
- set X,FP_SCR0
- set XDCARE,X+2
- set XFRAC,X+4
- set XFRACLO,X+8
-
- set ATANF,FP_SCR1
- set ATANFHI,ATANF+4
- set ATANFLO,ATANF+8
-
- global satan
- #--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
- satan:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- fmov.x %fp0,X(%a6)
- and.l &0x7FFFFFFF,%d1
-
- cmp.l %d1,&0x3FFB8000 # |X| >= 1/16?
- bge.b ATANOK1
- bra.w ATANSM
-
- ATANOK1:
- cmp.l %d1,&0x4002FFFF # |X| < 16 ?
- ble.b ATANMAIN
- bra.w ATANBIG
-
- #--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
- #--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ).
- #--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN
- #--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
- #--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS
- #--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR
- #--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO
- #--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE
- #--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL
- #--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE
- #--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION
- #--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION
- #--WILL INVOLVE A VERY LONG POLYNOMIAL.
-
- #--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
- #--WE CHOSE F TO BE +-2^K * 1.BBBB1
- #--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE
- #--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE
- #--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS
- #-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).
-
- ATANMAIN:
-
- and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS
- or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1
- mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F
-
- fmov.x %fp0,%fp1 # FP1 IS X
- fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0
- fsub.x X(%a6),%fp0 # FP0 IS X-F
- fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F
- fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F)
-
- #--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)
- #--CREATE ATAN(F) AND STORE IT IN ATANF, AND
- #--SAVE REGISTERS FP2.
-
- mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY
- mov.l %d1,%d2 # THE EXP AND 16 BITS OF X
- and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION
- and.l &0x7FFF0000,%d2 # EXPONENT OF F
- sub.l &0x3FFB0000,%d2 # K+4
- asr.l &1,%d2
- add.l %d2,%d1 # THE 7 BITS IDENTIFYING F
- asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|)
- lea ATANTBL(%pc),%a1
- add.l %d1,%a1 # ADDRESS OF ATAN(|F|)
- mov.l (%a1)+,ATANF(%a6)
- mov.l (%a1)+,ATANFHI(%a6)
- mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|)
- mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN
- and.l &0x80000000,%d1 # SIGN(F)
- or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|)
- mov.l (%sp)+,%d2 # RESTORE d2
-
- #--THAT'S ALL I HAVE TO DO FOR NOW,
- #--BUT ALAS, THE DIVIDE IS STILL CRANKING!
-
- #--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS
- #--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U
- #--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT.
- #--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3))
- #--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3.
- #--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT
- #--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED
-
- fmovm.x &0x04,-(%sp) # save fp2
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1
- fmov.d ATANA3(%pc),%fp2
- fadd.x %fp1,%fp2 # A3+V
- fmul.x %fp1,%fp2 # V*(A3+V)
- fmul.x %fp0,%fp1 # U*V
- fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V)
- fmul.d ATANA1(%pc),%fp1 # A1*U*V
- fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V))
- fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED
-
- fmovm.x (%sp)+,&0x20 # restore fp2
-
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- fadd.x ATANF(%a6),%fp0 # ATAN(X)
- bra t_inx2
-
- ATANBORS:
- #--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED.
- #--FP0 IS X AND |X| <= 1/16 OR |X| >= 16.
- cmp.l %d1,&0x3FFF8000
- bgt.w ATANBIG # I.E. |X| >= 16
-
- ATANSM:
- #--|X| <= 1/16
- #--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE
- #--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6)))))
- #--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] )
- #--WHERE Y = X*X, AND Z = Y*Y.
-
- cmp.l %d1,&0x3FD78000
- blt.w ATANTINY
-
- #--COMPUTE POLYNOMIAL
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmul.x %fp0,%fp0 # FPO IS Y = X*X
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y
-
- fmov.d ATANB6(%pc),%fp2
- fmov.d ATANB5(%pc),%fp3
-
- fmul.x %fp1,%fp2 # Z*B6
- fmul.x %fp1,%fp3 # Z*B5
-
- fadd.d ATANB4(%pc),%fp2 # B4+Z*B6
- fadd.d ATANB3(%pc),%fp3 # B3+Z*B5
-
- fmul.x %fp1,%fp2 # Z*(B4+Z*B6)
- fmul.x %fp3,%fp1 # Z*(B3+Z*B5)
-
- fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6)
- fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5)
-
- fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6))
- fmul.x X(%a6),%fp0 # X*Y
-
- fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]
-
- fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))])
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- fadd.x X(%a6),%fp0
- bra t_inx2
-
- ATANTINY:
- #--|X| < 2^(-40), ATAN(X) = X
-
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x X(%a6),%fp0 # last inst - possible exception set
-
- bra t_catch
-
- ATANBIG:
- #--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE,
- #--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
- cmp.l %d1,&0x40638000
- bgt.w ATANHUGE
-
- #--APPROXIMATE ATAN(-1/X) BY
- #--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X'
- #--THIS CAN BE RE-WRITTEN AS
- #--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y.
-
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmov.s &0xBF800000,%fp1 # LOAD -1
- fdiv.x %fp0,%fp1 # FP1 IS -1/X
-
- #--DIVIDE IS STILL CRANKING
-
- fmov.x %fp1,%fp0 # FP0 IS X'
- fmul.x %fp0,%fp0 # FP0 IS Y = X'*X'
- fmov.x %fp1,X(%a6) # X IS REALLY X'
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y
-
- fmov.d ATANC5(%pc),%fp3
- fmov.d ATANC4(%pc),%fp2
-
- fmul.x %fp1,%fp3 # Z*C5
- fmul.x %fp1,%fp2 # Z*B4
-
- fadd.d ATANC3(%pc),%fp3 # C3+Z*C5
- fadd.d ATANC2(%pc),%fp2 # C2+Z*C4
-
- fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED
- fmul.x %fp0,%fp2 # Y*(C2+Z*C4)
-
- fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5)
- fmul.x X(%a6),%fp0 # X'*Y
-
- fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]
-
- fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)]
- # ... +[Y*(B2+Z*(B4+Z*B6))])
- fadd.x X(%a6),%fp0
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- tst.b (%a0)
- bpl.b pos_big
-
- neg_big:
- fadd.x NPIBY2(%pc),%fp0
- bra t_minx2
-
- pos_big:
- fadd.x PPIBY2(%pc),%fp0
- bra t_pinx2
-
- ATANHUGE:
- #--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY
- tst.b (%a0)
- bpl.b pos_huge
-
- neg_huge:
- fmov.x NPIBY2(%pc),%fp0
- fmov.l %d0,%fpcr
- fadd.x PTINY(%pc),%fp0
- bra t_minx2
-
- pos_huge:
- fmov.x PPIBY2(%pc),%fp0
- fmov.l %d0,%fpcr
- fadd.x NTINY(%pc),%fp0
- bra t_pinx2
-
- global satand
- #--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT
- satand:
- bra t_extdnrm
-
- #########################################################################
- # sasin(): computes the inverse sine of a normalized input #
- # sasind(): computes the inverse sine of a denormalized input #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # d0 = round precision,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = arcsin(X) #
- # #
- # ACCURACY and MONOTONICITY ******************************************* #
- # The returned result is within 3 ulps in 64 significant bit, #
- # i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
- # rounded to double precision. The result is provably monotonic #
- # in double precision. #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # ASIN #
- # 1. If |X| >= 1, go to 3. #
- # #
- # 2. (|X| < 1) Calculate asin(X) by #
- # z := sqrt( [1-X][1+X] ) #
- # asin(X) = atan( x / z ). #
- # Exit. #
- # #
- # 3. If |X| > 1, go to 5. #
- # #
- # 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.#
- # #
- # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
- # Exit. #
- # #
- #########################################################################
-
- global sasin
- sasin:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x3FFF8000
- bge.b ASINBIG
-
- # This catch is added here for the '060 QSP. Originally, the call to
- # satan() would handle this case by causing the exception which would
- # not be caught until gen_except(). Now, with the exceptions being
- # detected inside of satan(), the exception would have been handled there
- # instead of inside sasin() as expected.
- cmp.l %d1,&0x3FD78000
- blt.w ASINTINY
-
- #--THIS IS THE USUAL CASE, |X| < 1
- #--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) )
-
- ASINMAIN:
- fmov.s &0x3F800000,%fp1
- fsub.x %fp0,%fp1 # 1-X
- fmovm.x &0x4,-(%sp) # {fp2}
- fmov.s &0x3F800000,%fp2
- fadd.x %fp0,%fp2 # 1+X
- fmul.x %fp2,%fp1 # (1+X)(1-X)
- fmovm.x (%sp)+,&0x20 # {fp2}
- fsqrt.x %fp1 # SQRT([1-X][1+X])
- fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X])
- fmovm.x &0x01,-(%sp) # save X/SQRT(...)
- lea (%sp),%a0 # pass ptr to X/SQRT(...)
- bsr satan
- add.l &0xc,%sp # clear X/SQRT(...) from stack
- bra t_inx2
-
- ASINBIG:
- fabs.x %fp0 # |X|
- fcmp.s %fp0,&0x3F800000
- fbgt t_operr # cause an operr exception
-
- #--|X| = 1, ASIN(X) = +- PI/2.
- ASINONE:
- fmov.x PIBY2(%pc),%fp0
- mov.l (%a0),%d1
- and.l &0x80000000,%d1 # SIGN BIT OF X
- or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT
- mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT
- fmov.l %d0,%fpcr
- fmul.s (%sp)+,%fp0
- bra t_inx2
-
- #--|X| < 2^(-40), ATAN(X) = X
- ASINTINY:
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x (%a0),%fp0 # last inst - possible exception
- bra t_catch
-
- global sasind
- #--ASIN(X) = X FOR DENORMALIZED X
- sasind:
- bra t_extdnrm
-
- #########################################################################
- # sacos(): computes the inverse cosine of a normalized input #
- # sacosd(): computes the inverse cosine of a denormalized input #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # d0 = round precision,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = arccos(X) #
- # #
- # ACCURACY and MONOTONICITY ******************************************* #
- # The returned result is within 3 ulps in 64 significant bit, #
- # i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
- # rounded to double precision. The result is provably monotonic #
- # in double precision. #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # ACOS #
- # 1. If |X| >= 1, go to 3. #
- # #
- # 2. (|X| < 1) Calculate acos(X) by #
- # z := (1-X) / (1+X) #
- # acos(X) = 2 * atan( sqrt(z) ). #
- # Exit. #
- # #
- # 3. If |X| > 1, go to 5. #
- # #
- # 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. #
- # #
- # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
- # Exit. #
- # #
- #########################################################################
-
- global sacos
- sacos:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1 # pack exp w/ upper 16 fraction
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x3FFF8000
- bge.b ACOSBIG
-
- #--THIS IS THE USUAL CASE, |X| < 1
- #--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) )
-
- ACOSMAIN:
- fmov.s &0x3F800000,%fp1
- fadd.x %fp0,%fp1 # 1+X
- fneg.x %fp0 # -X
- fadd.s &0x3F800000,%fp0 # 1-X
- fdiv.x %fp1,%fp0 # (1-X)/(1+X)
- fsqrt.x %fp0 # SQRT((1-X)/(1+X))
- mov.l %d0,-(%sp) # save original users fpcr
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save SQRT(...) to stack
- lea (%sp),%a0 # pass ptr to sqrt
- bsr satan # ATAN(SQRT([1-X]/[1+X]))
- add.l &0xc,%sp # clear SQRT(...) from stack
-
- fmov.l (%sp)+,%fpcr # restore users round prec,mode
- fadd.x %fp0,%fp0 # 2 * ATAN( STUFF )
- bra t_pinx2
-
- ACOSBIG:
- fabs.x %fp0
- fcmp.s %fp0,&0x3F800000
- fbgt t_operr # cause an operr exception
-
- #--|X| = 1, ACOS(X) = 0 OR PI
- tst.b (%a0) # is X positive or negative?
- bpl.b ACOSP1
-
- #--X = -1
- #Returns PI and inexact exception
- ACOSM1:
- fmov.x PI(%pc),%fp0 # load PI
- fmov.l %d0,%fpcr # load round mode,prec
- fadd.s &0x00800000,%fp0 # add a small value
- bra t_pinx2
-
- ACOSP1:
- bra ld_pzero # answer is positive zero
-
- global sacosd
- #--ACOS(X) = PI/2 FOR DENORMALIZED X
- sacosd:
- fmov.l %d0,%fpcr # load user's rnd mode/prec
- fmov.x PIBY2(%pc),%fp0
- bra t_pinx2
-
- #########################################################################
- # setox(): computes the exponential for a normalized input #
- # setoxd(): computes the exponential for a denormalized input #
- # setoxm1(): computes the exponential minus 1 for a normalized input #
- # setoxm1d(): computes the exponential minus 1 for a denormalized input #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # d0 = round precision,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = exp(X) or exp(X)-1 #
- # #
- # ACCURACY and MONOTONICITY ******************************************* #
- # The returned result is within 0.85 ulps in 64 significant bit, #
- # i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
- # rounded to double precision. The result is provably monotonic #
- # in double precision. #
- # #
- # ALGORITHM and IMPLEMENTATION **************************************** #
- # #
- # setoxd #
- # ------ #
- # Step 1. Set ans := 1.0 #
- # #
- # Step 2. Return ans := ans + sign(X)*2^(-126). Exit. #
- # Notes: This will always generate one exception -- inexact. #
- # #
- # #
- # setox #
- # ----- #
- # #
- # Step 1. Filter out extreme cases of input argument. #
- # 1.1 If |X| >= 2^(-65), go to Step 1.3. #
- # 1.2 Go to Step 7. #
- # 1.3 If |X| < 16380 log(2), go to Step 2. #
- # 1.4 Go to Step 8. #
- # Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.#
- # To avoid the use of floating-point comparisons, a #
- # compact representation of |X| is used. This format is a #
- # 32-bit integer, the upper (more significant) 16 bits #
- # are the sign and biased exponent field of |X|; the #
- # lower 16 bits are the 16 most significant fraction #
- # (including the explicit bit) bits of |X|. Consequently, #
- # the comparisons in Steps 1.1 and 1.3 can be performed #
- # by integer comparison. Note also that the constant #
- # 16380 log(2) used in Step 1.3 is also in the compact #
- # form. Thus taking the branch to Step 2 guarantees #
- # |X| < 16380 log(2). There is no harm to have a small #
- # number of cases where |X| is less than, but close to, #
- # 16380 log(2) and the branch to Step 9 is taken. #
- # #
- # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
- # 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 #
- # was taken) #
- # 2.2 N := round-to-nearest-integer( X * 64/log2 ). #
- # 2.3 Calculate J = N mod 64; so J = 0,1,2,..., #
- # or 63. #
- # 2.4 Calculate M = (N - J)/64; so N = 64M + J. #
- # 2.5 Calculate the address of the stored value of #
- # 2^(J/64). #
- # 2.6 Create the value Scale = 2^M. #
- # Notes: The calculation in 2.2 is really performed by #
- # Z := X * constant #
- # N := round-to-nearest-integer(Z) #
- # where #
- # constant := single-precision( 64/log 2 ). #
- # #
- # Using a single-precision constant avoids memory #
- # access. Another effect of using a single-precision #
- # "constant" is that the calculated value Z is #
- # #
- # Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). #
- # #
- # This error has to be considered later in Steps 3 and 4. #
- # #
- # Step 3. Calculate X - N*log2/64. #
- # 3.1 R := X + N*L1, #
- # where L1 := single-precision(-log2/64). #
- # 3.2 R := R + N*L2, #
- # L2 := extended-precision(-log2/64 - L1).#
- # Notes: a) The way L1 and L2 are chosen ensures L1+L2 #
- # approximate the value -log2/64 to 88 bits of accuracy. #
- # b) N*L1 is exact because N is no longer than 22 bits #
- # and L1 is no longer than 24 bits. #
- # c) The calculation X+N*L1 is also exact due to #
- # cancellation. Thus, R is practically X+N(L1+L2) to full #
- # 64 bits. #
- # d) It is important to estimate how large can |R| be #
- # after Step 3.2. #
- # #
- # N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) #
- # X*64/log2 (1+eps) = N + f, |f| <= 0.5 #
- # X*64/log2 - N = f - eps*X 64/log2 #
- # X - N*log2/64 = f*log2/64 - eps*X #
- # #
- # #
- # Now |X| <= 16446 log2, thus #
- # #
- # |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 #
- # <= 0.57 log2/64. #
- # This bound will be used in Step 4. #
- # #
- # Step 4. Approximate exp(R)-1 by a polynomial #
- # p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) #
- # Notes: a) In order to reduce memory access, the coefficients #
- # are made as "short" as possible: A1 (which is 1/2), A4 #
- # and A5 are single precision; A2 and A3 are double #
- # precision. #
- # b) Even with the restrictions above, #
- # |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. #
- # Note that 0.0062 is slightly bigger than 0.57 log2/64. #
- # c) To fully utilize the pipeline, p is separated into #
- # two independent pieces of roughly equal complexities #
- # p = [ R + R*S*(A2 + S*A4) ] + #
- # [ S*(A1 + S*(A3 + S*A5)) ] #
- # where S = R*R. #
- # #
- # Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by #
- # ans := T + ( T*p + t) #
- # where T and t are the stored values for 2^(J/64). #
- # Notes: 2^(J/64) is stored as T and t where T+t approximates #
- # 2^(J/64) to roughly 85 bits; T is in extended precision #
- # and t is in single precision. Note also that T is #
- # rounded to 62 bits so that the last two bits of T are #
- # zero. The reason for such a special form is that T-1, #
- # T-2, and T-8 will all be exact --- a property that will #
- # give much more accurate computation of the function #
- # EXPM1. #
- # #
- # Step 6. Reconstruction of exp(X) #
- # exp(X) = 2^M * 2^(J/64) * exp(R). #
- # 6.1 If AdjFlag = 0, go to 6.3 #
- # 6.2 ans := ans * AdjScale #
- # 6.3 Restore the user FPCR #
- # 6.4 Return ans := ans * Scale. Exit. #
- # Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, #
- # |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will #
- # neither overflow nor underflow. If AdjFlag = 1, that #
- # means that #
- # X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. #
- # Hence, exp(X) may overflow or underflow or neither. #
- # When that is the case, AdjScale = 2^(M1) where M1 is #
- # approximately M. Thus 6.2 will never cause #
- # over/underflow. Possible exception in 6.4 is overflow #
- # or underflow. The inexact exception is not generated in #
- # 6.4. Although one can argue that the inexact flag #
- # should always be raised, to simulate that exception #
- # cost to much than the flag is worth in practical uses. #
- # #
- # Step 7. Return 1 + X. #
- # 7.1 ans := X #
- # 7.2 Restore user FPCR. #
- # 7.3 Return ans := 1 + ans. Exit #
- # Notes: For non-zero X, the inexact exception will always be #
- # raised by 7.3. That is the only exception raised by 7.3.#
- # Note also that we use the FMOVEM instruction to move X #
- # in Step 7.1 to avoid unnecessary trapping. (Although #
- # the FMOVEM may not seem relevant since X is normalized, #
- # the precaution will be useful in the library version of #
- # this code where the separate entry for denormalized #
- # inputs will be done away with.) #
- # #
- # Step 8. Handle exp(X) where |X| >= 16380log2. #
- # 8.1 If |X| > 16480 log2, go to Step 9. #
- # (mimic 2.2 - 2.6) #
- # 8.2 N := round-to-integer( X * 64/log2 ) #
- # 8.3 Calculate J = N mod 64, J = 0,1,...,63 #
- # 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, #
- # AdjFlag := 1. #
- # 8.5 Calculate the address of the stored value #
- # 2^(J/64). #
- # 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. #
- # 8.7 Go to Step 3. #
- # Notes: Refer to notes for 2.2 - 2.6. #
- # #
- # Step 9. Handle exp(X), |X| > 16480 log2. #
- # 9.1 If X < 0, go to 9.3 #
- # 9.2 ans := Huge, go to 9.4 #
- # 9.3 ans := Tiny. #
- # 9.4 Restore user FPCR. #
- # 9.5 Return ans := ans * ans. Exit. #
- # Notes: Exp(X) will surely overflow or underflow, depending on #
- # X's sign. "Huge" and "Tiny" are respectively large/tiny #
- # extended-precision numbers whose square over/underflow #
- # with an inexact result. Thus, 9.5 always raises the #
- # inexact together with either overflow or underflow. #
- # #
- # setoxm1d #
- # -------- #
- # #
- # Step 1. Set ans := 0 #
- # #
- # Step 2. Return ans := X + ans. Exit. #
- # Notes: This will return X with the appropriate rounding #
- # precision prescribed by the user FPCR. #
- # #
- # setoxm1 #
- # ------- #
- # #
- # Step 1. Check |X| #
- # 1.1 If |X| >= 1/4, go to Step 1.3. #
- # 1.2 Go to Step 7. #
- # 1.3 If |X| < 70 log(2), go to Step 2. #
- # 1.4 Go to Step 10. #
- # Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.#
- # However, it is conceivable |X| can be small very often #
- # because EXPM1 is intended to evaluate exp(X)-1 #
- # accurately when |X| is small. For further details on #
- # the comparisons, see the notes on Step 1 of setox. #
- # #
- # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
- # 2.1 N := round-to-nearest-integer( X * 64/log2 ). #
- # 2.2 Calculate J = N mod 64; so J = 0,1,2,..., #
- # or 63. #
- # 2.3 Calculate M = (N - J)/64; so N = 64M + J. #
- # 2.4 Calculate the address of the stored value of #
- # 2^(J/64). #
- # 2.5 Create the values Sc = 2^M and #
- # OnebySc := -2^(-M). #
- # Notes: See the notes on Step 2 of setox. #
- # #
- # Step 3. Calculate X - N*log2/64. #
- # 3.1 R := X + N*L1, #
- # where L1 := single-precision(-log2/64). #
- # 3.2 R := R + N*L2, #
- # L2 := extended-precision(-log2/64 - L1).#
- # Notes: Applying the analysis of Step 3 of setox in this case #
- # shows that |R| <= 0.0055 (note that |X| <= 70 log2 in #
- # this case). #
- # #
- # Step 4. Approximate exp(R)-1 by a polynomial #
- # p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) #
- # Notes: a) In order to reduce memory access, the coefficients #
- # are made as "short" as possible: A1 (which is 1/2), A5 #
- # and A6 are single precision; A2, A3 and A4 are double #
- # precision. #
- # b) Even with the restriction above, #
- # |p - (exp(R)-1)| < |R| * 2^(-72.7) #
- # for all |R| <= 0.0055. #
- # c) To fully utilize the pipeline, p is separated into #
- # two independent pieces of roughly equal complexity #
- # p = [ R*S*(A2 + S*(A4 + S*A6)) ] + #
- # [ R + S*(A1 + S*(A3 + S*A5)) ] #
- # where S = R*R. #
- # #
- # Step 5. Compute 2^(J/64)*p by #
- # p := T*p #
- # where T and t are the stored values for 2^(J/64). #
- # Notes: 2^(J/64) is stored as T and t where T+t approximates #
- # 2^(J/64) to roughly 85 bits; T is in extended precision #
- # and t is in single precision. Note also that T is #
- # rounded to 62 bits so that the last two bits of T are #
- # zero. The reason for such a special form is that T-1, #
- # T-2, and T-8 will all be exact --- a property that will #
- # be exploited in Step 6 below. The total relative error #
- # in p is no bigger than 2^(-67.7) compared to the final #
- # result. #
- # #
- # Step 6. Reconstruction of exp(X)-1 #
- # exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). #
- # 6.1 If M <= 63, go to Step 6.3. #
- # 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 #
- # 6.3 If M >= -3, go to 6.5. #
- # 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 #
- # 6.5 ans := (T + OnebySc) + (p + t). #
- # 6.6 Restore user FPCR. #
- # 6.7 Return ans := Sc * ans. Exit. #
- # Notes: The various arrangements of the expressions give #
- # accurate evaluations. #
- # #
- # Step 7. exp(X)-1 for |X| < 1/4. #
- # 7.1 If |X| >= 2^(-65), go to Step 9. #
- # 7.2 Go to Step 8. #
- # #
- # Step 8. Calculate exp(X)-1, |X| < 2^(-65). #
- # 8.1 If |X| < 2^(-16312), goto 8.3 #
- # 8.2 Restore FPCR; return ans := X - 2^(-16382). #
- # Exit. #
- # 8.3 X := X * 2^(140). #
- # 8.4 Restore FPCR; ans := ans - 2^(-16382). #
- # Return ans := ans*2^(140). Exit #
- # Notes: The idea is to return "X - tiny" under the user #
- # precision and rounding modes. To avoid unnecessary #
- # inefficiency, we stay away from denormalized numbers #
- # the best we can. For |X| >= 2^(-16312), the #
- # straightforward 8.2 generates the inexact exception as #
- # the case warrants. #
- # #
- # Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial #
- # p = X + X*X*(B1 + X*(B2 + ... + X*B12)) #
- # Notes: a) In order to reduce memory access, the coefficients #
- # are made as "short" as possible: B1 (which is 1/2), B9 #
- # to B12 are single precision; B3 to B8 are double #
- # precision; and B2 is double extended. #
- # b) Even with the restriction above, #
- # |p - (exp(X)-1)| < |X| 2^(-70.6) #
- # for all |X| <= 0.251. #
- # Note that 0.251 is slightly bigger than 1/4. #
- # c) To fully preserve accuracy, the polynomial is #
- # computed as #
- # X + ( S*B1 + Q ) where S = X*X and #
- # Q = X*S*(B2 + X*(B3 + ... + X*B12)) #
- # d) To fully utilize the pipeline, Q is separated into #
- # two independent pieces of roughly equal complexity #
- # Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + #
- # [ S*S*(B3 + S*(B5 + ... + S*B11)) ] #
- # #
- # Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. #
- # 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all #
- # practical purposes. Therefore, go to Step 1 of setox. #
- # 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical #
- # purposes. #
- # ans := -1 #
- # Restore user FPCR #
- # Return ans := ans + 2^(-126). Exit. #
- # Notes: 10.2 will always create an inexact and return -1 + tiny #
- # in the user rounding precision and mode. #
- # #
- #########################################################################
-
- L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000
-
- EEXPA3: long 0x3FA55555,0x55554CC1
- EEXPA2: long 0x3FC55555,0x55554A54
-
- EM1A4: long 0x3F811111,0x11174385
- EM1A3: long 0x3FA55555,0x55554F5A
-
- EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000
-
- EM1B8: long 0x3EC71DE3,0xA5774682
- EM1B7: long 0x3EFA01A0,0x19D7CB68
-
- EM1B6: long 0x3F2A01A0,0x1A019DF3
- EM1B5: long 0x3F56C16C,0x16C170E2
-
- EM1B4: long 0x3F811111,0x11111111
- EM1B3: long 0x3FA55555,0x55555555
-
- EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB
- long 0x00000000
-
- TWO140: long 0x48B00000,0x00000000
- TWON140:
- long 0x37300000,0x00000000
-
- EEXPTBL:
- long 0x3FFF0000,0x80000000,0x00000000,0x00000000
- long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B
- long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9
- long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369
- long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C
- long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F
- long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729
- long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF
- long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF
- long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA
- long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051
- long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029
- long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494
- long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0
- long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D
- long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537
- long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD
- long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087
- long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818
- long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D
- long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890
- long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C
- long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05
- long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126
- long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140
- long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA
- long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A
- long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC
- long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC
- long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610
- long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90
- long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A
- long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13
- long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30
- long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC
- long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6
- long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70
- long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518
- long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41
- long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B
- long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568
- long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E
- long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03
- long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D
- long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4
- long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C
- long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9
- long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21
- long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F
- long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F
- long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207
- long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175
- long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B
- long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5
- long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A
- long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22
- long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945
- long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B
- long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3
- long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05
- long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19
- long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5
- long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22
- long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A
-
- set ADJFLAG,L_SCR2
- set SCALE,FP_SCR0
- set ADJSCALE,FP_SCR1
- set SC,FP_SCR0
- set ONEBYSC,FP_SCR1
-
- global setox
- setox:
- #--entry point for EXP(X), here X is finite, non-zero, and not NaN's
-
- #--Step 1.
- mov.l (%a0),%d1 # load part of input X
- and.l &0x7FFF0000,%d1 # biased expo. of X
- cmp.l %d1,&0x3FBE0000 # 2^(-65)
- bge.b EXPC1 # normal case
- bra EXPSM
-
- EXPC1:
- #--The case |X| >= 2^(-65)
- mov.w 4(%a0),%d1 # expo. and partial sig. of |X|
- cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits
- blt.b EXPMAIN # normal case
- bra EEXPBIG
-
- EXPMAIN:
- #--Step 2.
- #--This is the normal branch: 2^(-65) <= |X| < 16380 log2.
- fmov.x (%a0),%fp0 # load input from (a0)
-
- fmov.x %fp0,%fp1
- fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
- fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
- mov.l &0,ADJFLAG(%a6)
- fmov.l %fp0,%d1 # N = int( X * 64/log2 )
- lea EEXPTBL(%pc),%a1
- fmov.l %d1,%fp0 # convert to floating-format
-
- mov.l %d1,L_SCR1(%a6) # save N temporarily
- and.l &0x3F,%d1 # D0 is J = N mod 64
- lsl.l &4,%d1
- add.l %d1,%a1 # address of 2^(J/64)
- mov.l L_SCR1(%a6),%d1
- asr.l &6,%d1 # D0 is M
- add.w &0x3FFF,%d1 # biased expo. of 2^(M)
- mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB
-
- EXPCONT1:
- #--Step 3.
- #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
- #--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
- fmov.x %fp0,%fp2
- fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64)
- fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64
- fadd.x %fp1,%fp0 # X + N*L1
- fadd.x %fp2,%fp0 # fp0 is R, reduced arg.
-
- #--Step 4.
- #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
- #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
- #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
- #--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # fp1 IS S = R*R
-
- fmov.s &0x3AB60B70,%fp2 # fp2 IS A5
-
- fmul.x %fp1,%fp2 # fp2 IS S*A5
- fmov.x %fp1,%fp3
- fmul.s &0x3C088895,%fp3 # fp3 IS S*A4
-
- fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5
- fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4
-
- fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5)
- mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended
- mov.l &0x80000000,SCALE+4(%a6)
- clr.l SCALE+8(%a6)
-
- fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4)
-
- fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5)
- fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4)
-
- fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5))
- fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4),
-
- fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64)
- fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1
-
- #--Step 5
- #--final reconstruction process
- #--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
-
- fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1)
- fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
- fadd.s (%a1),%fp0 # accurate 2^(J/64)
-
- fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*...
- mov.l ADJFLAG(%a6),%d1
-
- #--Step 6
- tst.l %d1
- beq.b NORMAL
- ADJUST:
- fmul.x ADJSCALE(%a6),%fp0
- NORMAL:
- fmov.l %d0,%fpcr # restore user FPCR
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x SCALE(%a6),%fp0 # multiply 2^(M)
- bra t_catch
-
- EXPSM:
- #--Step 7
- fmovm.x (%a0),&0x80 # load X
- fmov.l %d0,%fpcr
- fadd.s &0x3F800000,%fp0 # 1+X in user mode
- bra t_pinx2
-
- EEXPBIG:
- #--Step 8
- cmp.l %d1,&0x400CB27C # 16480 log2
- bgt.b EXP2BIG
- #--Steps 8.2 -- 8.6
- fmov.x (%a0),%fp0 # load input from (a0)
-
- fmov.x %fp0,%fp1
- fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
- fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
- mov.l &1,ADJFLAG(%a6)
- fmov.l %fp0,%d1 # N = int( X * 64/log2 )
- lea EEXPTBL(%pc),%a1
- fmov.l %d1,%fp0 # convert to floating-format
- mov.l %d1,L_SCR1(%a6) # save N temporarily
- and.l &0x3F,%d1 # D0 is J = N mod 64
- lsl.l &4,%d1
- add.l %d1,%a1 # address of 2^(J/64)
- mov.l L_SCR1(%a6),%d1
- asr.l &6,%d1 # D0 is K
- mov.l %d1,L_SCR1(%a6) # save K temporarily
- asr.l &1,%d1 # D0 is M1
- sub.l %d1,L_SCR1(%a6) # a1 is M
- add.w &0x3FFF,%d1 # biased expo. of 2^(M1)
- mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1)
- mov.l &0x80000000,ADJSCALE+4(%a6)
- clr.l ADJSCALE+8(%a6)
- mov.l L_SCR1(%a6),%d1 # D0 is M
- add.w &0x3FFF,%d1 # biased expo. of 2^(M)
- bra.w EXPCONT1 # go back to Step 3
-
- EXP2BIG:
- #--Step 9
- tst.b (%a0) # is X positive or negative?
- bmi t_unfl2
- bra t_ovfl2
-
- global setoxd
- setoxd:
- #--entry point for EXP(X), X is denormalized
- mov.l (%a0),-(%sp)
- andi.l &0x80000000,(%sp)
- ori.l &0x00800000,(%sp) # sign(X)*2^(-126)
-
- fmov.s &0x3F800000,%fp0
-
- fmov.l %d0,%fpcr
- fadd.s (%sp)+,%fp0
- bra t_pinx2
-
- global setoxm1
- setoxm1:
- #--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
-
- #--Step 1.
- #--Step 1.1
- mov.l (%a0),%d1 # load part of input X
- and.l &0x7FFF0000,%d1 # biased expo. of X
- cmp.l %d1,&0x3FFD0000 # 1/4
- bge.b EM1CON1 # |X| >= 1/4
- bra EM1SM
-
- EM1CON1:
- #--Step 1.3
- #--The case |X| >= 1/4
- mov.w 4(%a0),%d1 # expo. and partial sig. of |X|
- cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits
- ble.b EM1MAIN # 1/4 <= |X| <= 70log2
- bra EM1BIG
-
- EM1MAIN:
- #--Step 2.
- #--This is the case: 1/4 <= |X| <= 70 log2.
- fmov.x (%a0),%fp0 # load input from (a0)
-
- fmov.x %fp0,%fp1
- fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
- fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
- fmov.l %fp0,%d1 # N = int( X * 64/log2 )
- lea EEXPTBL(%pc),%a1
- fmov.l %d1,%fp0 # convert to floating-format
-
- mov.l %d1,L_SCR1(%a6) # save N temporarily
- and.l &0x3F,%d1 # D0 is J = N mod 64
- lsl.l &4,%d1
- add.l %d1,%a1 # address of 2^(J/64)
- mov.l L_SCR1(%a6),%d1
- asr.l &6,%d1 # D0 is M
- mov.l %d1,L_SCR1(%a6) # save a copy of M
-
- #--Step 3.
- #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
- #--a0 points to 2^(J/64), D0 and a1 both contain M
- fmov.x %fp0,%fp2
- fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64)
- fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64
- fadd.x %fp1,%fp0 # X + N*L1
- fadd.x %fp2,%fp0 # fp0 is R, reduced arg.
- add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M
-
- #--Step 4.
- #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
- #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
- #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
- #--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # fp1 IS S = R*R
-
- fmov.s &0x3950097B,%fp2 # fp2 IS a6
-
- fmul.x %fp1,%fp2 # fp2 IS S*A6
- fmov.x %fp1,%fp3
- fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5
-
- fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6
- fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5
- mov.w %d1,SC(%a6) # SC is 2^(M) in extended
- mov.l &0x80000000,SC+4(%a6)
- clr.l SC+8(%a6)
-
- fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6)
- mov.l L_SCR1(%a6),%d1 # D0 is M
- neg.w %d1 # D0 is -M
- fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5)
- add.w &0x3FFF,%d1 # biased expo. of 2^(-M)
- fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6)
- fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5)
-
- fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6))
- or.w &0x8000,%d1 # signed/expo. of -2^(-M)
- mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M)
- mov.l &0x80000000,ONEBYSC+4(%a6)
- clr.l ONEBYSC+8(%a6)
- fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5))
-
- fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6))
- fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5))
-
- fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1
-
- fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
-
- #--Step 5
- #--Compute 2^(J/64)*p
-
- fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1)
-
- #--Step 6
- #--Step 6.1
- mov.l L_SCR1(%a6),%d1 # retrieve M
- cmp.l %d1,&63
- ble.b MLE63
- #--Step 6.2 M >= 64
- fmov.s 12(%a1),%fp1 # fp1 is t
- fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc
- fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released
- fadd.x (%a1),%fp0 # T+(p+(t+OnebySc))
- bra EM1SCALE
- MLE63:
- #--Step 6.3 M <= 63
- cmp.l %d1,&-3
- bge.b MGEN3
- MLTN3:
- #--Step 6.4 M <= -4
- fadd.s 12(%a1),%fp0 # p+t
- fadd.x (%a1),%fp0 # T+(p+t)
- fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t))
- bra EM1SCALE
- MGEN3:
- #--Step 6.5 -3 <= M <= 63
- fmov.x (%a1)+,%fp1 # fp1 is T
- fadd.s (%a1),%fp0 # fp0 is p+t
- fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc
- fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t)
-
- EM1SCALE:
- #--Step 6.6
- fmov.l %d0,%fpcr
- fmul.x SC(%a6),%fp0
- bra t_inx2
-
- EM1SM:
- #--Step 7 |X| < 1/4.
- cmp.l %d1,&0x3FBE0000 # 2^(-65)
- bge.b EM1POLY
-
- EM1TINY:
- #--Step 8 |X| < 2^(-65)
- cmp.l %d1,&0x00330000 # 2^(-16312)
- blt.b EM12TINY
- #--Step 8.2
- mov.l &0x80010000,SC(%a6) # SC is -2^(-16382)
- mov.l &0x80000000,SC+4(%a6)
- clr.l SC+8(%a6)
- fmov.x (%a0),%fp0
- fmov.l %d0,%fpcr
- mov.b &FADD_OP,%d1 # last inst is ADD
- fadd.x SC(%a6),%fp0
- bra t_catch
-
- EM12TINY:
- #--Step 8.3
- fmov.x (%a0),%fp0
- fmul.d TWO140(%pc),%fp0
- mov.l &0x80010000,SC(%a6)
- mov.l &0x80000000,SC+4(%a6)
- clr.l SC+8(%a6)
- fadd.x SC(%a6),%fp0
- fmov.l %d0,%fpcr
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.d TWON140(%pc),%fp0
- bra t_catch
-
- EM1POLY:
- #--Step 9 exp(X)-1 by a simple polynomial
- fmov.x (%a0),%fp0 # fp0 is X
- fmul.x %fp0,%fp0 # fp0 is S := X*X
- fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
- fmov.s &0x2F30CAA8,%fp1 # fp1 is B12
- fmul.x %fp0,%fp1 # fp1 is S*B12
- fmov.s &0x310F8290,%fp2 # fp2 is B11
- fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12
-
- fmul.x %fp0,%fp2 # fp2 is S*B11
- fmul.x %fp0,%fp1 # fp1 is S*(B10 + ...
-
- fadd.s &0x3493F281,%fp2 # fp2 is B9+S*...
- fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*...
-
- fmul.x %fp0,%fp2 # fp2 is S*(B9+...
- fmul.x %fp0,%fp1 # fp1 is S*(B8+...
-
- fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*...
- fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*...
-
- fmul.x %fp0,%fp2 # fp2 is S*(B7+...
- fmul.x %fp0,%fp1 # fp1 is S*(B6+...
-
- fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*...
- fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*...
-
- fmul.x %fp0,%fp2 # fp2 is S*(B5+...
- fmul.x %fp0,%fp1 # fp1 is S*(B4+...
-
- fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*...
- fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*...
-
- fmul.x %fp0,%fp2 # fp2 is S*(B3+...
- fmul.x %fp0,%fp1 # fp1 is S*(B2+...
-
- fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...)
- fmul.x (%a0),%fp1 # fp1 is X*S*(B2...
-
- fmul.s &0x3F000000,%fp0 # fp0 is S*B1
- fadd.x %fp2,%fp1 # fp1 is Q
-
- fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
-
- fadd.x %fp1,%fp0 # fp0 is S*B1+Q
-
- fmov.l %d0,%fpcr
- fadd.x (%a0),%fp0
- bra t_inx2
-
- EM1BIG:
- #--Step 10 |X| > 70 log2
- mov.l (%a0),%d1
- cmp.l %d1,&0
- bgt.w EXPC1
- #--Step 10.2
- fmov.s &0xBF800000,%fp0 # fp0 is -1
- fmov.l %d0,%fpcr
- fadd.s &0x00800000,%fp0 # -1 + 2^(-126)
- bra t_minx2
-
- global setoxm1d
- setoxm1d:
- #--entry point for EXPM1(X), here X is denormalized
- #--Step 0.
- bra t_extdnrm
-
- #########################################################################
- # sgetexp(): returns the exponent portion of the input argument. #
- # The exponent bias is removed and the exponent value is #
- # returned as an extended precision number in fp0. #
- # sgetexpd(): handles denormalized numbers. #
- # #
- # sgetman(): extracts the mantissa of the input argument. The #
- # mantissa is converted to an extended precision number w/ #
- # an exponent of $3fff and is returned in fp0. The range of #
- # the result is [1.0 - 2.0). #
- # sgetmand(): handles denormalized numbers. #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = exponent(X) or mantissa(X) #
- # #
- #########################################################################
-
- global sgetexp
- sgetexp:
- mov.w SRC_EX(%a0),%d0 # get the exponent
- bclr &0xf,%d0 # clear the sign bit
- subi.w &0x3fff,%d0 # subtract off the bias
- fmov.w %d0,%fp0 # return exp in fp0
- blt.b sgetexpn # it's negative
- rts
-
- sgetexpn:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
- global sgetexpd
- sgetexpd:
- bsr.l norm # normalize
- neg.w %d0 # new exp = -(shft amt)
- subi.w &0x3fff,%d0 # subtract off the bias
- fmov.w %d0,%fp0 # return exp in fp0
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
- global sgetman
- sgetman:
- mov.w SRC_EX(%a0),%d0 # get the exp
- ori.w &0x7fff,%d0 # clear old exp
- bclr &0xe,%d0 # make it the new exp +-3fff
-
- # here, we build the result in a tmp location so as not to disturb the input
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc
- mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0
- bmi.b sgetmann # it's negative
- rts
-
- sgetmann:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
- #
- # For denormalized numbers, shift the mantissa until the j-bit = 1,
- # then load the exponent with +/1 $3fff.
- #
- global sgetmand
- sgetmand:
- bsr.l norm # normalize exponent
- bra.b sgetman
-
- #########################################################################
- # scosh(): computes the hyperbolic cosine of a normalized input #
- # scoshd(): computes the hyperbolic cosine of a denormalized input #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # d0 = round precision,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = cosh(X) #
- # #
- # ACCURACY and MONOTONICITY ******************************************* #
- # The returned result is within 3 ulps in 64 significant bit, #
- # i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
- # rounded to double precision. The result is provably monotonic #
- # in double precision. #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # COSH #
- # 1. If |X| > 16380 log2, go to 3. #
- # #
- # 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae #
- # y = |X|, z = exp(Y), and #
- # cosh(X) = (1/2)*( z + 1/z ). #
- # Exit. #
- # #
- # 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. #
- # #
- # 4. (16380 log2 < |X| <= 16480 log2) #
- # cosh(X) = sign(X) * exp(|X|)/2. #
- # However, invoking exp(|X|) may cause premature #
- # overflow. Thus, we calculate sinh(X) as follows: #
- # Y := |X| #
- # Fact := 2**(16380) #
- # Y' := Y - 16381 log2 #
- # cosh(X) := Fact * exp(Y'). #
- # Exit. #
- # #
- # 5. (|X| > 16480 log2) sinh(X) must overflow. Return #
- # Huge*Huge to generate overflow and an infinity with #
- # the appropriate sign. Huge is the largest finite number #
- # in extended format. Exit. #
- # #
- #########################################################################
-
- TWO16380:
- long 0x7FFB0000,0x80000000,0x00000000,0x00000000
-
- global scosh
- scosh:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x400CB167
- bgt.b COSHBIG
-
- #--THIS IS THE USUAL CASE, |X| < 16380 LOG2
- #--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) )
-
- fabs.x %fp0 # |X|
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save |X| to stack
- lea (%sp),%a0 # pass ptr to |X|
- bsr setox # FP0 IS EXP(|X|)
- add.l &0xc,%sp # erase |X| from stack
- fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|)
- mov.l (%sp)+,%d0
-
- fmov.s &0x3E800000,%fp1 # (1/4)
- fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|))
-
- fmov.l %d0,%fpcr
- mov.b &FADD_OP,%d1 # last inst is ADD
- fadd.x %fp1,%fp0
- bra t_catch
-
- COSHBIG:
- cmp.l %d1,&0x400CB2B3
- bgt.b COSHHUGE
-
- fabs.x %fp0
- fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD)
- fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save fp0 to stack
- lea (%sp),%a0 # pass ptr to fp0
- bsr setox
- add.l &0xc,%sp # clear fp0 from stack
- mov.l (%sp)+,%d0
-
- fmov.l %d0,%fpcr
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x TWO16380(%pc),%fp0
- bra t_catch
-
- COSHHUGE:
- bra t_ovfl2
-
- global scoshd
- #--COSH(X) = 1 FOR DENORMALIZED X
- scoshd:
- fmov.s &0x3F800000,%fp0
-
- fmov.l %d0,%fpcr
- fadd.s &0x00800000,%fp0
- bra t_pinx2
-
- #########################################################################
- # ssinh(): computes the hyperbolic sine of a normalized input #
- # ssinhd(): computes the hyperbolic sine of a denormalized input #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # d0 = round precision,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = sinh(X) #
- # #
- # ACCURACY and MONOTONICITY ******************************************* #
- # The returned result is within 3 ulps in 64 significant bit, #
- # i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
- # rounded to double precision. The result is provably monotonic #
- # in double precision. #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # SINH #
- # 1. If |X| > 16380 log2, go to 3. #
- # #
- # 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula #
- # y = |X|, sgn = sign(X), and z = expm1(Y), #
- # sinh(X) = sgn*(1/2)*( z + z/(1+z) ). #
- # Exit. #
- # #
- # 3. If |X| > 16480 log2, go to 5. #
- # #
- # 4. (16380 log2 < |X| <= 16480 log2) #
- # sinh(X) = sign(X) * exp(|X|)/2. #
- # However, invoking exp(|X|) may cause premature overflow. #
- # Thus, we calculate sinh(X) as follows: #
- # Y := |X| #
- # sgn := sign(X) #
- # sgnFact := sgn * 2**(16380) #
- # Y' := Y - 16381 log2 #
- # sinh(X) := sgnFact * exp(Y'). #
- # Exit. #
- # #
- # 5. (|X| > 16480 log2) sinh(X) must overflow. Return #
- # sign(X)*Huge*Huge to generate overflow and an infinity with #
- # the appropriate sign. Huge is the largest finite number in #
- # extended format. Exit. #
- # #
- #########################################################################
-
- global ssinh
- ssinh:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- mov.l %d1,%a1 # save (compacted) operand
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x400CB167
- bgt.b SINHBIG
-
- #--THIS IS THE USUAL CASE, |X| < 16380 LOG2
- #--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )
-
- fabs.x %fp0 # Y = |X|
-
- movm.l &0x8040,-(%sp) # {a1/d0}
- fmovm.x &0x01,-(%sp) # save Y on stack
- lea (%sp),%a0 # pass ptr to Y
- clr.l %d0
- bsr setoxm1 # FP0 IS Z = EXPM1(Y)
- add.l &0xc,%sp # clear Y from stack
- fmov.l &0,%fpcr
- movm.l (%sp)+,&0x0201 # {a1/d0}
-
- fmov.x %fp0,%fp1
- fadd.s &0x3F800000,%fp1 # 1+Z
- fmov.x %fp0,-(%sp)
- fdiv.x %fp1,%fp0 # Z/(1+Z)
- mov.l %a1,%d1
- and.l &0x80000000,%d1
- or.l &0x3F000000,%d1
- fadd.x (%sp)+,%fp0
- mov.l %d1,-(%sp)
-
- fmov.l %d0,%fpcr
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set
- bra t_catch
-
- SINHBIG:
- cmp.l %d1,&0x400CB2B3
- bgt t_ovfl
- fabs.x %fp0
- fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD)
- mov.l &0,-(%sp)
- mov.l &0x80000000,-(%sp)
- mov.l %a1,%d1
- and.l &0x80000000,%d1
- or.l &0x7FFB0000,%d1
- mov.l %d1,-(%sp) # EXTENDED FMT
- fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save fp0 on stack
- lea (%sp),%a0 # pass ptr to fp0
- bsr setox
- add.l &0xc,%sp # clear fp0 from stack
-
- mov.l (%sp)+,%d0
- fmov.l %d0,%fpcr
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x (%sp)+,%fp0 # possible exception
- bra t_catch
-
- global ssinhd
- #--SINH(X) = X FOR DENORMALIZED X
- ssinhd:
- bra t_extdnrm
-
- #########################################################################
- # stanh(): computes the hyperbolic tangent of a normalized input #
- # stanhd(): computes the hyperbolic tangent of a denormalized input #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # d0 = round precision,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = tanh(X) #
- # #
- # ACCURACY and MONOTONICITY ******************************************* #
- # The returned result is within 3 ulps in 64 significant bit, #
- # i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
- # rounded to double precision. The result is provably monotonic #
- # in double precision. #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # TANH #
- # 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. #
- # #
- # 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by #
- # sgn := sign(X), y := 2|X|, z := expm1(Y), and #
- # tanh(X) = sgn*( z/(2+z) ). #
- # Exit. #
- # #
- # 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, #
- # go to 7. #
- # #
- # 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. #
- # #
- # 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by #
- # sgn := sign(X), y := 2|X|, z := exp(Y), #
- # tanh(X) = sgn - [ sgn*2/(1+z) ]. #
- # Exit. #
- # #
- # 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we #
- # calculate Tanh(X) by #
- # sgn := sign(X), Tiny := 2**(-126), #
- # tanh(X) := sgn - sgn*Tiny. #
- # Exit. #
- # #
- # 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. #
- # #
- #########################################################################
-
- set X,FP_SCR0
- set XFRAC,X+4
-
- set SGN,L_SCR3
-
- set V,FP_SCR0
-
- global stanh
- stanh:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- fmov.x %fp0,X(%a6)
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- mov.l %d1,X(%a6)
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)?
- blt.w TANHBORS # yes
- cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2?
- bgt.w TANHBORS # yes
-
- #--THIS IS THE USUAL CASE
- #--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2).
-
- mov.l X(%a6),%d1
- mov.l %d1,SGN(%a6)
- and.l &0x7FFF0000,%d1
- add.l &0x00010000,%d1 # EXPONENT OF 2|X|
- mov.l %d1,X(%a6)
- and.l &0x80000000,SGN(%a6)
- fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X|
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x1,-(%sp) # save Y on stack
- lea (%sp),%a0 # pass ptr to Y
- bsr setoxm1 # FP0 IS Z = EXPM1(Y)
- add.l &0xc,%sp # clear Y from stack
- mov.l (%sp)+,%d0
-
- fmov.x %fp0,%fp1
- fadd.s &0x40000000,%fp1 # Z+2
- mov.l SGN(%a6),%d1
- fmov.x %fp1,V(%a6)
- eor.l %d1,V(%a6)
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- fdiv.x V(%a6),%fp0
- bra t_inx2
-
- TANHBORS:
- cmp.l %d1,&0x3FFF8000
- blt.w TANHSM
-
- cmp.l %d1,&0x40048AA1
- bgt.w TANHHUGE
-
- #-- (5/2) LOG2 < |X| < 50 LOG2,
- #--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X),
- #--TANH(X) = SGN - SGN*2/[EXP(Y)+1].
-
- mov.l X(%a6),%d1
- mov.l %d1,SGN(%a6)
- and.l &0x7FFF0000,%d1
- add.l &0x00010000,%d1 # EXPO OF 2|X|
- mov.l %d1,X(%a6) # Y = 2|X|
- and.l &0x80000000,SGN(%a6)
- mov.l SGN(%a6),%d1
- fmov.x X(%a6),%fp0 # Y = 2|X|
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save Y on stack
- lea (%sp),%a0 # pass ptr to Y
- bsr setox # FP0 IS EXP(Y)
- add.l &0xc,%sp # clear Y from stack
- mov.l (%sp)+,%d0
- mov.l SGN(%a6),%d1
- fadd.s &0x3F800000,%fp0 # EXP(Y)+1
-
- eor.l &0xC0000000,%d1 # -SIGN(X)*2
- fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT
- fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ]
-
- mov.l SGN(%a6),%d1
- or.l &0x3F800000,%d1 # SGN
- fmov.s %d1,%fp0 # SGN IN SGL FMT
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- mov.b &FADD_OP,%d1 # last inst is ADD
- fadd.x %fp1,%fp0
- bra t_inx2
-
- TANHSM:
- fmov.l %d0,%fpcr # restore users round prec,mode
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x X(%a6),%fp0 # last inst - possible exception set
- bra t_catch
-
- #---RETURN SGN(X) - SGN(X)EPS
- TANHHUGE:
- mov.l X(%a6),%d1
- and.l &0x80000000,%d1
- or.l &0x3F800000,%d1
- fmov.s %d1,%fp0
- and.l &0x80000000,%d1
- eor.l &0x80800000,%d1 # -SIGN(X)*EPS
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- fadd.s %d1,%fp0
- bra t_inx2
-
- global stanhd
- #--TANH(X) = X FOR DENORMALIZED X
- stanhd:
- bra t_extdnrm
-
- #########################################################################
- # slogn(): computes the natural logarithm of a normalized input #
- # slognd(): computes the natural logarithm of a denormalized input #
- # slognp1(): computes the log(1+X) of a normalized input #
- # slognp1d(): computes the log(1+X) of a denormalized input #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # d0 = round precision,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = log(X) or log(1+X) #
- # #
- # ACCURACY and MONOTONICITY ******************************************* #
- # The returned result is within 2 ulps in 64 significant bit, #
- # i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
- # rounded to double precision. The result is provably monotonic #
- # in double precision. #
- # #
- # ALGORITHM *********************************************************** #
- # LOGN: #
- # Step 1. If |X-1| < 1/16, approximate log(X) by an odd #
- # polynomial in u, where u = 2(X-1)/(X+1). Otherwise, #
- # move on to Step 2. #
- # #
- # Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first #
- # seven significant bits of Y plus 2**(-7), i.e. #
- # F = 1.xxxxxx1 in base 2 where the six "x" match those #
- # of Y. Note that |Y-F| <= 2**(-7). #
- # #
- # Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a #
- # polynomial in u, log(1+u) = poly. #
- # #
- # Step 4. Reconstruct #
- # log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) #
- # by k*log(2) + (log(F) + poly). The values of log(F) are #
- # calculated beforehand and stored in the program. #
- # #
- # lognp1: #
- # Step 1: If |X| < 1/16, approximate log(1+X) by an odd #
- # polynomial in u where u = 2X/(2+X). Otherwise, move on #
- # to Step 2. #
- # #
- # Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done #
- # in Step 2 of the algorithm for LOGN and compute #
- # log(1+X) as k*log(2) + log(F) + poly where poly #
- # approximates log(1+u), u = (Y-F)/F. #
- # #
- # Implementation Notes: #
- # Note 1. There are 64 different possible values for F, thus 64 #
- # log(F)'s need to be tabulated. Moreover, the values of #
- # 1/F are also tabulated so that the division in (Y-F)/F #
- # can be performed by a multiplication. #
- # #
- # Note 2. In Step 2 of lognp1, in order to preserved accuracy, #
- # the value Y-F has to be calculated carefully when #
- # 1/2 <= X < 3/2. #
- # #
- # Note 3. To fully exploit the pipeline, polynomials are usually #
- # separated into two parts evaluated independently before #
- # being added up. #
- # #
- #########################################################################
- LOGOF2:
- long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
-
- one:
- long 0x3F800000
- zero:
- long 0x00000000
- infty:
- long 0x7F800000
- negone:
- long 0xBF800000
-
- LOGA6:
- long 0x3FC2499A,0xB5E4040B
- LOGA5:
- long 0xBFC555B5,0x848CB7DB
-
- LOGA4:
- long 0x3FC99999,0x987D8730
- LOGA3:
- long 0xBFCFFFFF,0xFF6F7E97
-
- LOGA2:
- long 0x3FD55555,0x555555A4
- LOGA1:
- long 0xBFE00000,0x00000008
-
- LOGB5:
- long 0x3F175496,0xADD7DAD6
- LOGB4:
- long 0x3F3C71C2,0xFE80C7E0
-
- LOGB3:
- long 0x3F624924,0x928BCCFF
- LOGB2:
- long 0x3F899999,0x999995EC
-
- LOGB1:
- long 0x3FB55555,0x55555555
- TWO:
- long 0x40000000,0x00000000
-
- LTHOLD:
- long 0x3f990000,0x80000000,0x00000000,0x00000000
-
- LOGTBL:
- long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000
- long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000
- long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000
- long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000
- long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000
- long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000
- long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000
- long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000
- long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000
- long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000
- long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000
- long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000
- long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000
- long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000
- long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000
- long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000
- long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000
- long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000
- long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000
- long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000
- long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000
- long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000
- long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000
- long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000
- long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000
- long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000
- long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000
- long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000
- long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000
- long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000
- long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000
- long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000
- long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000
- long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000
- long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000
- long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000
- long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000
- long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000
- long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000
- long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000
- long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000
- long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000
- long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000
- long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000
- long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000
- long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000
- long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000
- long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000
- long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000
- long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000
- long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000
- long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000
- long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000
- long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000
- long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000
- long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000
- long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000
- long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000
- long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000
- long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000
- long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000
- long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000
- long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000
- long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000
- long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000
- long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000
- long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000
- long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000
- long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000
- long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000
- long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000
- long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000
- long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000
- long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000
- long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000
- long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000
- long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000
- long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000
- long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000
- long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000
- long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000
- long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000
- long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000
- long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000
- long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000
- long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000
- long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000
- long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000
- long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000
- long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000
- long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000
- long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000
- long 0x3FFE0000,0x94458094,0x45809446,0x00000000
- long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000
- long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000
- long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000
- long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000
- long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000
- long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000
- long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000
- long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000
- long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000
- long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000
- long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000
- long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000
- long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000
- long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000
- long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000
- long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000
- long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000
- long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000
- long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000
- long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000
- long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000
- long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000
- long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000
- long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000
- long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000
- long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000
- long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000
- long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000
- long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000
- long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000
- long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000
- long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000
- long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000
- long 0x3FFE0000,0x80808080,0x80808081,0x00000000
- long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000
-
- set ADJK,L_SCR1
-
- set X,FP_SCR0
- set XDCARE,X+2
- set XFRAC,X+4
-
- set F,FP_SCR1
- set FFRAC,F+4
-
- set KLOG2,FP_SCR0
-
- set SAVEU,FP_SCR0
-
- global slogn
- #--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S
- slogn:
- fmov.x (%a0),%fp0 # LOAD INPUT
- mov.l &0x00000000,ADJK(%a6)
-
- LOGBGN:
- #--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS
- #--A FINITE, NON-ZERO, NORMALIZED NUMBER.
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
-
- mov.l (%a0),X(%a6)
- mov.l 4(%a0),X+4(%a6)
- mov.l 8(%a0),X+8(%a6)
-
- cmp.l %d1,&0 # CHECK IF X IS NEGATIVE
- blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID
- # X IS POSITIVE, CHECK IF X IS NEAR 1
- cmp.l %d1,&0x3ffef07d # IS X < 15/16?
- blt.b LOGMAIN # YES
- cmp.l %d1,&0x3fff8841 # IS X > 17/16?
- ble.w LOGNEAR1 # NO
-
- LOGMAIN:
- #--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1
-
- #--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY.
- #--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.
- #--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y)
- #-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F).
- #--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING
- #--LOG(1+U) CAN BE VERY EFFICIENT.
- #--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO
- #--DIVISION IS NEEDED TO CALCULATE (Y-F)/F.
-
- #--GET K, Y, F, AND ADDRESS OF 1/F.
- asr.l &8,%d1
- asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X
- sub.l &0x3FFF,%d1 # THIS IS K
- add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM.
- lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F)
- fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT
-
- #--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F
- mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X
- mov.l XFRAC(%a6),FFRAC(%a6)
- and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y
- or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT
- mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F
- and.l &0x7E000000,%d1
- asr.l &8,%d1
- asr.l &8,%d1
- asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT
- add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F
-
- fmov.x X(%a6),%fp0
- mov.l &0x3fff0000,F(%a6)
- clr.l F+8(%a6)
- fsub.x F(%a6),%fp0 # Y-F
- fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY
- #--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K
- #--REGISTERS SAVED: FPCR, FP1, FP2
-
- LP1CONT1:
- #--AN RE-ENTRY POINT FOR LOGNP1
- fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F
- fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY
- fmov.x %fp0,%fp2
- fmul.x %fp2,%fp2 # FP2 IS V=U*U
- fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1
-
- #--LOG(1+U) IS APPROXIMATED BY
- #--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS
- #--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))]
-
- fmov.x %fp2,%fp3
- fmov.x %fp2,%fp1
-
- fmul.d LOGA6(%pc),%fp1 # V*A6
- fmul.d LOGA5(%pc),%fp2 # V*A5
-
- fadd.d LOGA4(%pc),%fp1 # A4+V*A6
- fadd.d LOGA3(%pc),%fp2 # A3+V*A5
-
- fmul.x %fp3,%fp1 # V*(A4+V*A6)
- fmul.x %fp3,%fp2 # V*(A3+V*A5)
-
- fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6)
- fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5)
-
- fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6))
- add.l &16,%a0 # ADDRESS OF LOG(F)
- fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5))
-
- fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6))
- fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5))
-
- fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6))
- fmovm.x (%sp)+,&0x30 # RESTORE FP2-3
- fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U)
-
- fmov.l %d0,%fpcr
- fadd.x KLOG2(%a6),%fp0 # FINAL ADD
- bra t_inx2
-
-
- LOGNEAR1:
-
- # if the input is exactly equal to one, then exit through ld_pzero.
- # if these 2 lines weren't here, the correct answer would be returned
- # but the INEX2 bit would be set.
- fcmp.b %fp0,&0x1 # is it equal to one?
- fbeq.l ld_pzero # yes
-
- #--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT.
- fmov.x %fp0,%fp1
- fsub.s one(%pc),%fp1 # FP1 IS X-1
- fadd.s one(%pc),%fp0 # FP0 IS X+1
- fadd.x %fp1,%fp1 # FP1 IS 2(X-1)
- #--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL
- #--IN U, U = 2(X-1)/(X+1) = FP1/FP0
-
- LP1CONT2:
- #--THIS IS AN RE-ENTRY POINT FOR LOGNP1
- fdiv.x %fp0,%fp1 # FP1 IS U
- fmovm.x &0xc,-(%sp) # SAVE FP2-3
- #--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3
- #--LET V=U*U, W=V*V, CALCULATE
- #--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY
- #--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] )
- fmov.x %fp1,%fp0
- fmul.x %fp0,%fp0 # FP0 IS V
- fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS W
-
- fmov.d LOGB5(%pc),%fp3
- fmov.d LOGB4(%pc),%fp2
-
- fmul.x %fp1,%fp3 # W*B5
- fmul.x %fp1,%fp2 # W*B4
-
- fadd.d LOGB3(%pc),%fp3 # B3+W*B5
- fadd.d LOGB2(%pc),%fp2 # B2+W*B4
-
- fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED
-
- fmul.x %fp0,%fp2 # V*(B2+W*B4)
-
- fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5)
- fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V
-
- fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED
- fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED
-
- fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] )
-
- fmov.l %d0,%fpcr
- fadd.x SAVEU(%a6),%fp0
- bra t_inx2
-
- #--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID
- LOGNEG:
- bra t_operr
-
- global slognd
- slognd:
- #--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT
-
- mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0
-
- #----normalize the input value by left shifting k bits (k to be determined
- #----below), adjusting exponent and storing -k to ADJK
- #----the value TWOTO100 is no longer needed.
- #----Note that this code assumes the denormalized input is NON-ZERO.
-
- movm.l &0x3f00,-(%sp) # save some registers {d2-d7}
- mov.l (%a0),%d3 # D3 is exponent of smallest norm. #
- mov.l 4(%a0),%d4
- mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X)
- clr.l %d2 # D2 used for holding K
-
- tst.l %d4
- bne.b Hi_not0
-
- Hi_0:
- mov.l %d5,%d4
- clr.l %d5
- mov.l &32,%d2
- clr.l %d6
- bfffo %d4{&0:&32},%d6
- lsl.l %d6,%d4
- add.l %d6,%d2 # (D3,D4,D5) is normalized
-
- mov.l %d3,X(%a6)
- mov.l %d4,XFRAC(%a6)
- mov.l %d5,XFRAC+4(%a6)
- neg.l %d2
- mov.l %d2,ADJK(%a6)
- fmov.x X(%a6),%fp0
- movm.l (%sp)+,&0xfc # restore registers {d2-d7}
- lea X(%a6),%a0
- bra.w LOGBGN # begin regular log(X)
-
- Hi_not0:
- clr.l %d6
- bfffo %d4{&0:&32},%d6 # find first 1
- mov.l %d6,%d2 # get k
- lsl.l %d6,%d4
- mov.l %d5,%d7 # a copy of D5
- lsl.l %d6,%d5
- neg.l %d6
- add.l &32,%d6
- lsr.l %d6,%d7
- or.l %d7,%d4 # (D3,D4,D5) normalized
-
- mov.l %d3,X(%a6)
- mov.l %d4,XFRAC(%a6)
- mov.l %d5,XFRAC+4(%a6)
- neg.l %d2
- mov.l %d2,ADJK(%a6)
- fmov.x X(%a6),%fp0
- movm.l (%sp)+,&0xfc # restore registers {d2-d7}
- lea X(%a6),%a0
- bra.w LOGBGN # begin regular log(X)
-
- global slognp1
- #--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S
- slognp1:
- fmov.x (%a0),%fp0 # LOAD INPUT
- fabs.x %fp0 # test magnitude
- fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold
- fbgt.w LP1REAL # if greater, continue
- fmov.l %d0,%fpcr
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x (%a0),%fp0 # return signed argument
- bra t_catch
-
- LP1REAL:
- fmov.x (%a0),%fp0 # LOAD INPUT
- mov.l &0x00000000,ADJK(%a6)
- fmov.x %fp0,%fp1 # FP1 IS INPUT Z
- fadd.s one(%pc),%fp0 # X := ROUND(1+Z)
- fmov.x %fp0,X(%a6)
- mov.w XFRAC(%a6),XDCARE(%a6)
- mov.l X(%a6),%d1
- cmp.l %d1,&0
- ble.w LP1NEG0 # LOG OF ZERO OR -VE
- cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]?
- blt.w LOGMAIN
- cmp.l %d1,&0x3fffc000
- bgt.w LOGMAIN
- #--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z,
- #--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE,
- #--SIMPLY INVOKE LOG(X) FOR LOG(1+Z).
-
- LP1NEAR1:
- #--NEXT SEE IF EXP(-1/16) < X < EXP(1/16)
- cmp.l %d1,&0x3ffef07d
- blt.w LP1CARE
- cmp.l %d1,&0x3fff8841
- bgt.w LP1CARE
-
- LP1ONE16:
- #--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2)
- #--WHERE U = 2Z/(2+Z) = 2Z/(1+X).
- fadd.x %fp1,%fp1 # FP1 IS 2Z
- fadd.s one(%pc),%fp0 # FP0 IS 1+X
- #--U = FP1/FP0
- bra.w LP1CONT2
-
- LP1CARE:
- #--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE
- #--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST
- #--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2],
- #--THERE ARE ONLY TWO CASES.
- #--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z
- #--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z
- #--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF
- #--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED.
-
- mov.l XFRAC(%a6),FFRAC(%a6)
- and.l &0xFE000000,FFRAC(%a6)
- or.l &0x01000000,FFRAC(%a6) # F OBTAINED
- cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1
- bge.b KISZERO
-
- KISNEG1:
- fmov.s TWO(%pc),%fp0
- mov.l &0x3fff0000,F(%a6)
- clr.l F+8(%a6)
- fsub.x F(%a6),%fp0 # 2-F
- mov.l FFRAC(%a6),%d1
- and.l &0x7E000000,%d1
- asr.l &8,%d1
- asr.l &8,%d1
- asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F
- fadd.x %fp1,%fp1 # GET 2Z
- fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3}
- fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z
- lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F
- add.l %d1,%a0
- fmov.s negone(%pc),%fp1 # FP1 IS K = -1
- bra.w LP1CONT1
-
- KISZERO:
- fmov.s one(%pc),%fp0
- mov.l &0x3fff0000,F(%a6)
- clr.l F+8(%a6)
- fsub.x F(%a6),%fp0 # 1-F
- mov.l FFRAC(%a6),%d1
- and.l &0x7E000000,%d1
- asr.l &8,%d1
- asr.l &8,%d1
- asr.l &4,%d1
- fadd.x %fp1,%fp0 # FP0 IS Y-F
- fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3}
- lea LOGTBL(%pc),%a0
- add.l %d1,%a0 # A0 IS ADDRESS OF 1/F
- fmov.s zero(%pc),%fp1 # FP1 IS K = 0
- bra.w LP1CONT1
-
- LP1NEG0:
- #--FPCR SAVED. D0 IS X IN COMPACT FORM.
- cmp.l %d1,&0
- blt.b LP1NEG
- LP1ZERO:
- fmov.s negone(%pc),%fp0
-
- fmov.l %d0,%fpcr
- bra t_dz
-
- LP1NEG:
- fmov.s zero(%pc),%fp0
-
- fmov.l %d0,%fpcr
- bra t_operr
-
- global slognp1d
- #--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT
- # Simply return the denorm
- slognp1d:
- bra t_extdnrm
-
- #########################################################################
- # satanh(): computes the inverse hyperbolic tangent of a norm input #
- # satanhd(): computes the inverse hyperbolic tangent of a denorm input #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # d0 = round precision,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = arctanh(X) #
- # #
- # ACCURACY and MONOTONICITY ******************************************* #
- # The returned result is within 3 ulps in 64 significant bit, #
- # i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
- # rounded to double precision. The result is provably monotonic #
- # in double precision. #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # ATANH #
- # 1. If |X| >= 1, go to 3. #
- # #
- # 2. (|X| < 1) Calculate atanh(X) by #
- # sgn := sign(X) #
- # y := |X| #
- # z := 2y/(1-y) #
- # atanh(X) := sgn * (1/2) * logp1(z) #
- # Exit. #
- # #
- # 3. If |X| > 1, go to 5. #
- # #
- # 4. (|X| = 1) Generate infinity with an appropriate sign and #
- # divide-by-zero by #
- # sgn := sign(X) #
- # atan(X) := sgn / (+0). #
- # Exit. #
- # #
- # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
- # Exit. #
- # #
- #########################################################################
-
- global satanh
- satanh:
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x3FFF8000
- bge.b ATANHBIG
-
- #--THIS IS THE USUAL CASE, |X| < 1
- #--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z).
-
- fabs.x (%a0),%fp0 # Y = |X|
- fmov.x %fp0,%fp1
- fneg.x %fp1 # -Y
- fadd.x %fp0,%fp0 # 2Y
- fadd.s &0x3F800000,%fp1 # 1-Y
- fdiv.x %fp1,%fp0 # 2Y/(1-Y)
- mov.l (%a0),%d1
- and.l &0x80000000,%d1
- or.l &0x3F000000,%d1 # SIGN(X)*HALF
- mov.l %d1,-(%sp)
-
- mov.l %d0,-(%sp) # save rnd prec,mode
- clr.l %d0 # pass ext prec,RN
- fmovm.x &0x01,-(%sp) # save Z on stack
- lea (%sp),%a0 # pass ptr to Z
- bsr slognp1 # LOG1P(Z)
- add.l &0xc,%sp # clear Z from stack
-
- mov.l (%sp)+,%d0 # fetch old prec,mode
- fmov.l %d0,%fpcr # load it
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.s (%sp)+,%fp0
- bra t_catch
-
- ATANHBIG:
- fabs.x (%a0),%fp0 # |X|
- fcmp.s %fp0,&0x3F800000
- fbgt t_operr
- bra t_dz
-
- global satanhd
- #--ATANH(X) = X FOR DENORMALIZED X
- satanhd:
- bra t_extdnrm
-
- #########################################################################
- # slog10(): computes the base-10 logarithm of a normalized input #
- # slog10d(): computes the base-10 logarithm of a denormalized input #
- # slog2(): computes the base-2 logarithm of a normalized input #
- # slog2d(): computes the base-2 logarithm of a denormalized input #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # d0 = round precision,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = log_10(X) or log_2(X) #
- # #
- # ACCURACY and MONOTONICITY ******************************************* #
- # The returned result is within 1.7 ulps in 64 significant bit, #
- # i.e. within 0.5003 ulp to 53 bits if the result is subsequently #
- # rounded to double precision. The result is provably monotonic #
- # in double precision. #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # slog10d: #
- # #
- # Step 0. If X < 0, create a NaN and raise the invalid operation #
- # flag. Otherwise, save FPCR in D1; set FpCR to default. #
- # Notes: Default means round-to-nearest mode, no floating-point #
- # traps, and precision control = double extended. #
- # #
- # Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
- # Notes: Even if X is denormalized, log(X) is always normalized. #
- # #
- # Step 2. Compute log_10(X) = log(X) * (1/log(10)). #
- # 2.1 Restore the user FPCR #
- # 2.2 Return ans := Y * INV_L10. #
- # #
- # slog10: #
- # #
- # Step 0. If X < 0, create a NaN and raise the invalid operation #
- # flag. Otherwise, save FPCR in D1; set FpCR to default. #
- # Notes: Default means round-to-nearest mode, no floating-point #
- # traps, and precision control = double extended. #
- # #
- # Step 1. Call sLogN to obtain Y = log(X), the natural log of X. #
- # #
- # Step 2. Compute log_10(X) = log(X) * (1/log(10)). #
- # 2.1 Restore the user FPCR #
- # 2.2 Return ans := Y * INV_L10. #
- # #
- # sLog2d: #
- # #
- # Step 0. If X < 0, create a NaN and raise the invalid operation #
- # flag. Otherwise, save FPCR in D1; set FpCR to default. #
- # Notes: Default means round-to-nearest mode, no floating-point #
- # traps, and precision control = double extended. #
- # #
- # Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
- # Notes: Even if X is denormalized, log(X) is always normalized. #
- # #
- # Step 2. Compute log_10(X) = log(X) * (1/log(2)). #
- # 2.1 Restore the user FPCR #
- # 2.2 Return ans := Y * INV_L2. #
- # #
- # sLog2: #
- # #
- # Step 0. If X < 0, create a NaN and raise the invalid operation #
- # flag. Otherwise, save FPCR in D1; set FpCR to default. #
- # Notes: Default means round-to-nearest mode, no floating-point #
- # traps, and precision control = double extended. #
- # #
- # Step 1. If X is not an integer power of two, i.e., X != 2^k, #
- # go to Step 3. #
- # #
- # Step 2. Return k. #
- # 2.1 Get integer k, X = 2^k. #
- # 2.2 Restore the user FPCR. #
- # 2.3 Return ans := convert-to-double-extended(k). #
- # #
- # Step 3. Call sLogN to obtain Y = log(X), the natural log of X. #
- # #
- # Step 4. Compute log_2(X) = log(X) * (1/log(2)). #
- # 4.1 Restore the user FPCR #
- # 4.2 Return ans := Y * INV_L2. #
- # #
- #########################################################################
-
- INV_L10:
- long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000
-
- INV_L2:
- long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000
-
- global slog10
- #--entry point for Log10(X), X is normalized
- slog10:
- fmov.b &0x1,%fp0
- fcmp.x %fp0,(%a0) # if operand == 1,
- fbeq.l ld_pzero # return an EXACT zero
-
- mov.l (%a0),%d1
- blt.w invalid
- mov.l %d0,-(%sp)
- clr.l %d0
- bsr slogn # log(X), X normal.
- fmov.l (%sp)+,%fpcr
- fmul.x INV_L10(%pc),%fp0
- bra t_inx2
-
- global slog10d
- #--entry point for Log10(X), X is denormalized
- slog10d:
- mov.l (%a0),%d1
- blt.w invalid
- mov.l %d0,-(%sp)
- clr.l %d0
- bsr slognd # log(X), X denorm.
- fmov.l (%sp)+,%fpcr
- fmul.x INV_L10(%pc),%fp0
- bra t_minx2
-
- global slog2
- #--entry point for Log2(X), X is normalized
- slog2:
- mov.l (%a0),%d1
- blt.w invalid
-
- mov.l 8(%a0),%d1
- bne.b continue # X is not 2^k
-
- mov.l 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- bne.b continue
-
- #--X = 2^k.
- mov.w (%a0),%d1
- and.l &0x00007FFF,%d1
- sub.l &0x3FFF,%d1
- beq.l ld_pzero
- fmov.l %d0,%fpcr
- fmov.l %d1,%fp0
- bra t_inx2
-
- continue:
- mov.l %d0,-(%sp)
- clr.l %d0
- bsr slogn # log(X), X normal.
- fmov.l (%sp)+,%fpcr
- fmul.x INV_L2(%pc),%fp0
- bra t_inx2
-
- invalid:
- bra t_operr
-
- global slog2d
- #--entry point for Log2(X), X is denormalized
- slog2d:
- mov.l (%a0),%d1
- blt.w invalid
- mov.l %d0,-(%sp)
- clr.l %d0
- bsr slognd # log(X), X denorm.
- fmov.l (%sp)+,%fpcr
- fmul.x INV_L2(%pc),%fp0
- bra t_minx2
-
- #########################################################################
- # stwotox(): computes 2**X for a normalized input #
- # stwotoxd(): computes 2**X for a denormalized input #
- # stentox(): computes 10**X for a normalized input #
- # stentoxd(): computes 10**X for a denormalized input #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input #
- # d0 = round precision,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = 2**X or 10**X #
- # #
- # ACCURACY and MONOTONICITY ******************************************* #
- # The returned result is within 2 ulps in 64 significant bit, #
- # i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
- # rounded to double precision. The result is provably monotonic #
- # in double precision. #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # twotox #
- # 1. If |X| > 16480, go to ExpBig. #
- # #
- # 2. If |X| < 2**(-70), go to ExpSm. #
- # #
- # 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore #
- # decompose N as #
- # N = 64(M + M') + j, j = 0,1,2,...,63. #
- # #
- # 4. Overwrite r := r * log2. Then #
- # 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). #
- # Go to expr to compute that expression. #
- # #
- # tentox #
- # 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. #
- # #
- # 2. If |X| < 2**(-70), go to ExpSm. #
- # #
- # 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set #
- # N := round-to-int(y). Decompose N as #
- # N = 64(M + M') + j, j = 0,1,2,...,63. #
- # #
- # 4. Define r as #
- # r := ((X - N*L1)-N*L2) * L10 #
- # where L1, L2 are the leading and trailing parts of #
- # log_10(2)/64 and L10 is the natural log of 10. Then #
- # 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). #
- # Go to expr to compute that expression. #
- # #
- # expr #
- # 1. Fetch 2**(j/64) from table as Fact1 and Fact2. #
- # #
- # 2. Overwrite Fact1 and Fact2 by #
- # Fact1 := 2**(M) * Fact1 #
- # Fact2 := 2**(M) * Fact2 #
- # Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). #
- # #
- # 3. Calculate P where 1 + P approximates exp(r): #
- # P = r + r*r*(A1+r*(A2+...+r*A5)). #
- # #
- # 4. Let AdjFact := 2**(M'). Return #
- # AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). #
- # Exit. #
- # #
- # ExpBig #
- # 1. Generate overflow by Huge * Huge if X > 0; otherwise, #
- # generate underflow by Tiny * Tiny. #
- # #
- # ExpSm #
- # 1. Return 1 + X. #
- # #
- #########################################################################
-
- L2TEN64:
- long 0x406A934F,0x0979A371 # 64LOG10/LOG2
- L10TWO1:
- long 0x3F734413,0x509F8000 # LOG2/64LOG10
-
- L10TWO2:
- long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000
-
- LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000
-
- LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
-
- EXPA5: long 0x3F56C16D,0x6F7BD0B2
- EXPA4: long 0x3F811112,0x302C712C
- EXPA3: long 0x3FA55555,0x55554CC1
- EXPA2: long 0x3FC55555,0x55554A54
- EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000
-
- TEXPTBL:
- long 0x3FFF0000,0x80000000,0x00000000,0x3F738000
- long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA
- long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9
- long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9
- long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA
- long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C
- long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1
- long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA
- long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373
- long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670
- long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700
- long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0
- long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D
- long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319
- long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B
- long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5
- long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A
- long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B
- long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF
- long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA
- long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD
- long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E
- long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B
- long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB
- long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB
- long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274
- long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C
- long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00
- long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301
- long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367
- long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F
- long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C
- long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB
- long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB
- long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C
- long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA
- long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD
- long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51
- long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A
- long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2
- long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB
- long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17
- long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C
- long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8
- long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53
- long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE
- long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124
- long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243
- long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A
- long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61
- long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610
- long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1
- long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12
- long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE
- long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4
- long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F
- long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A
- long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A
- long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC
- long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F
- long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A
- long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795
- long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B
- long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581
-
- set INT,L_SCR1
-
- set X,FP_SCR0
- set XDCARE,X+2
- set XFRAC,X+4
-
- set ADJFACT,FP_SCR0
-
- set FACT1,FP_SCR0
- set FACT1HI,FACT1+4
- set FACT1LOW,FACT1+8
-
- set FACT2,FP_SCR1
- set FACT2HI,FACT2+4
- set FACT2LOW,FACT2+8
-
- global stwotox
- #--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
- stwotox:
- fmovm.x (%a0),&0x80 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- fmov.x %fp0,X(%a6)
- and.l &0x7FFFFFFF,%d1
-
- cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)?
- bge.b TWOOK1
- bra.w EXPBORS
-
- TWOOK1:
- cmp.l %d1,&0x400D80C0 # |X| > 16480?
- ble.b TWOMAIN
- bra.w EXPBORS
-
- TWOMAIN:
- #--USUAL CASE, 2^(-70) <= |X| <= 16480
-
- fmov.x %fp0,%fp1
- fmul.s &0x42800000,%fp1 # 64 * X
- fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X)
- mov.l %d2,-(%sp)
- lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64)
- fmov.l INT(%a6),%fp1 # N --> FLOATING FMT
- mov.l INT(%a6),%d1
- mov.l %d1,%d2
- and.l &0x3F,%d1 # D0 IS J
- asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64)
- add.l %d1,%a1 # ADDRESS FOR 2^(J/64)
- asr.l &6,%d2 # d2 IS L, N = 64L + J
- mov.l %d2,%d1
- asr.l &1,%d1 # D0 IS M
- sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J
- add.l &0x3FFF,%d2
-
- #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
- #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
- #--ADJFACT = 2^(M').
- #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
-
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmul.s &0x3C800000,%fp1 # (1/64)*N
- mov.l (%a1)+,FACT1(%a6)
- mov.l (%a1)+,FACT1HI(%a6)
- mov.l (%a1)+,FACT1LOW(%a6)
- mov.w (%a1)+,FACT2(%a6)
-
- fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X)
-
- mov.w (%a1)+,FACT2HI(%a6)
- clr.w FACT2HI+2(%a6)
- clr.l FACT2LOW(%a6)
- add.w %d1,FACT1(%a6)
- fmul.x LOG2(%pc),%fp0 # FP0 IS R
- add.w %d1,FACT2(%a6)
-
- bra.w expr
-
- EXPBORS:
- #--FPCR, D0 SAVED
- cmp.l %d1,&0x3FFF8000
- bgt.b TEXPBIG
-
- #--|X| IS SMALL, RETURN 1 + X
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- fadd.s &0x3F800000,%fp0 # RETURN 1 + X
- bra t_pinx2
-
- TEXPBIG:
- #--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW
- #--REGISTERS SAVE SO FAR ARE FPCR AND D0
- mov.l X(%a6),%d1
- cmp.l %d1,&0
- blt.b EXPNEG
-
- bra t_ovfl2 # t_ovfl expects positive value
-
- EXPNEG:
- bra t_unfl2 # t_unfl expects positive value
-
- global stwotoxd
- stwotoxd:
- #--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT
-
- fmov.l %d0,%fpcr # set user's rounding mode/precision
- fmov.s &0x3F800000,%fp0 # RETURN 1 + X
- mov.l (%a0),%d1
- or.l &0x00800001,%d1
- fadd.s %d1,%fp0
- bra t_pinx2
-
- global stentox
- #--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
- stentox:
- fmovm.x (%a0),&0x80 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- fmov.x %fp0,X(%a6)
- and.l &0x7FFFFFFF,%d1
-
- cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)?
- bge.b TENOK1
- bra.w EXPBORS
-
- TENOK1:
- cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ?
- ble.b TENMAIN
- bra.w EXPBORS
-
- TENMAIN:
- #--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10
-
- fmov.x %fp0,%fp1
- fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2
- fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2)
- mov.l %d2,-(%sp)
- lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64)
- fmov.l INT(%a6),%fp1 # N --> FLOATING FMT
- mov.l INT(%a6),%d1
- mov.l %d1,%d2
- and.l &0x3F,%d1 # D0 IS J
- asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64)
- add.l %d1,%a1 # ADDRESS FOR 2^(J/64)
- asr.l &6,%d2 # d2 IS L, N = 64L + J
- mov.l %d2,%d1
- asr.l &1,%d1 # D0 IS M
- sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J
- add.l &0x3FFF,%d2
-
- #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
- #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
- #--ADJFACT = 2^(M').
- #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmov.x %fp1,%fp2
-
- fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD
- mov.l (%a1)+,FACT1(%a6)
-
- fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL
-
- mov.l (%a1)+,FACT1HI(%a6)
- mov.l (%a1)+,FACT1LOW(%a6)
- fsub.x %fp1,%fp0 # X - N L_LEAD
- mov.w (%a1)+,FACT2(%a6)
-
- fsub.x %fp2,%fp0 # X - N L_TRAIL
-
- mov.w (%a1)+,FACT2HI(%a6)
- clr.w FACT2HI+2(%a6)
- clr.l FACT2LOW(%a6)
-
- fmul.x LOG10(%pc),%fp0 # FP0 IS R
- add.w %d1,FACT1(%a6)
- add.w %d1,FACT2(%a6)
-
- expr:
- #--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN.
- #--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64).
- #--FP0 IS R. THE FOLLOWING CODE COMPUTES
- #-- 2**(M'+M) * 2**(J/64) * EXP(R)
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS S = R*R
-
- fmov.d EXPA5(%pc),%fp2 # FP2 IS A5
- fmov.d EXPA4(%pc),%fp3 # FP3 IS A4
-
- fmul.x %fp1,%fp2 # FP2 IS S*A5
- fmul.x %fp1,%fp3 # FP3 IS S*A4
-
- fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5
- fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4
-
- fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5)
- fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4)
-
- fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5)
- fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4)
-
- fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5))
- fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4)
- fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
- #--FINAL RECONSTRUCTION PROCESS
- #--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0)
-
- fmul.x FACT1(%a6),%fp0
- fadd.x FACT2(%a6),%fp0
- fadd.x FACT1(%a6),%fp0
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT
- mov.l (%sp)+,%d2
- mov.l &0x80000000,ADJFACT+4(%a6)
- clr.l ADJFACT+8(%a6)
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT
- bra t_catch
-
- global stentoxd
- stentoxd:
- #--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT
-
- fmov.l %d0,%fpcr # set user's rounding mode/precision
- fmov.s &0x3F800000,%fp0 # RETURN 1 + X
- mov.l (%a0),%d1
- or.l &0x00800001,%d1
- fadd.s %d1,%fp0
- bra t_pinx2
-
- #########################################################################
- # sscale(): computes the destination operand scaled by the source #
- # operand. If the absoulute value of the source operand is #
- # >= 2^14, an overflow or underflow is returned. #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to double-extended source operand X #
- # a1 = pointer to double-extended destination operand Y #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = scale(X,Y) #
- # #
- #########################################################################
-
- set SIGN, L_SCR1
-
- global sscale
- sscale:
- mov.l %d0,-(%sp) # store off ctrl bits for now
-
- mov.w DST_EX(%a1),%d1 # get dst exponent
- smi.b SIGN(%a6) # use SIGN to hold dst sign
- andi.l &0x00007fff,%d1 # strip sign from dst exp
-
- mov.w SRC_EX(%a0),%d0 # check src bounds
- andi.w &0x7fff,%d0 # clr src sign bit
- cmpi.w %d0,&0x3fff # is src ~ ZERO?
- blt.w src_small # yes
- cmpi.w %d0,&0x400c # no; is src too big?
- bgt.w src_out # yes
-
- #
- # Source is within 2^14 range.
- #
- src_ok:
- fintrz.x SRC(%a0),%fp0 # calc int of src
- fmov.l %fp0,%d0 # int src to d0
- # don't want any accrued bits from the fintrz showing up later since
- # we may need to read the fpsr for the last fp op in t_catch2().
- fmov.l &0x0,%fpsr
-
- tst.b DST_HI(%a1) # is dst denormalized?
- bmi.b sok_norm
-
- # the dst is a DENORM. normalize the DENORM and add the adjustment to
- # the src value. then, jump to the norm part of the routine.
- sok_dnrm:
- mov.l %d0,-(%sp) # save src for now
-
- mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy
- mov.l DST_HI(%a1),FP_SCR0_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR0_LO(%a6)
-
- lea FP_SCR0(%a6),%a0 # pass ptr to DENORM
- bsr.l norm # normalize the DENORM
- neg.l %d0
- add.l (%sp)+,%d0 # add adjustment to src
-
- fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM
-
- cmpi.w %d0,&-0x3fff # is the shft amt really low?
- bge.b sok_norm2 # thank goodness no
-
- # the multiply factor that we're trying to create should be a denorm
- # for the multiply to work. therefore, we're going to actually do a
- # multiply with a denorm which will cause an unimplemented data type
- # exception to be put into the machine which will be caught and corrected
- # later. we don't do this with the DENORMs above because this method
- # is slower. but, don't fret, I don't see it being used much either.
- fmov.l (%sp)+,%fpcr # restore user fpcr
- mov.l &0x80000000,%d1 # load normalized mantissa
- subi.l &-0x3fff,%d0 # how many should we shift?
- neg.l %d0 # make it positive
- cmpi.b %d0,&0x20 # is it > 32?
- bge.b sok_dnrm_32 # yes
- lsr.l %d0,%d1 # no; bit stays in upper lw
- clr.l -(%sp) # insert zero low mantissa
- mov.l %d1,-(%sp) # insert new high mantissa
- clr.l -(%sp) # make zero exponent
- bra.b sok_norm_cont
- sok_dnrm_32:
- subi.b &0x20,%d0 # get shift count
- lsr.l %d0,%d1 # make low mantissa longword
- mov.l %d1,-(%sp) # insert new low mantissa
- clr.l -(%sp) # insert zero high mantissa
- clr.l -(%sp) # make zero exponent
- bra.b sok_norm_cont
-
- # the src will force the dst to a DENORM value or worse. so, let's
- # create an fp multiply that will create the result.
- sok_norm:
- fmovm.x DST(%a1),&0x80 # load fp0 with normalized src
- sok_norm2:
- fmov.l (%sp)+,%fpcr # restore user fpcr
-
- addi.w &0x3fff,%d0 # turn src amt into exp value
- swap %d0 # put exponent in high word
- clr.l -(%sp) # insert new exponent
- mov.l &0x80000000,-(%sp) # insert new high mantissa
- mov.l %d0,-(%sp) # insert new lo mantissa
-
- sok_norm_cont:
- fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x (%sp)+,%fp0 # do the multiply
- bra t_catch2 # catch any exceptions
-
- #
- # Source is outside of 2^14 range. Test the sign and branch
- # to the appropriate exception handler.
- #
- src_out:
- mov.l (%sp)+,%d0 # restore ctrl bits
- exg %a0,%a1 # swap src,dst ptrs
- tst.b SRC_EX(%a1) # is src negative?
- bmi t_unfl # yes; underflow
- bra t_ovfl_sc # no; overflow
-
- #
- # The source input is below 1, so we check for denormalized numbers
- # and set unfl.
- #
- src_small:
- tst.b DST_HI(%a1) # is dst denormalized?
- bpl.b ssmall_done # yes
-
- mov.l (%sp)+,%d0
- fmov.l %d0,%fpcr # no; load control bits
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x DST(%a1),%fp0 # simply return dest
- bra t_catch2
- ssmall_done:
- mov.l (%sp)+,%d0 # load control bits into d1
- mov.l %a1,%a0 # pass ptr to dst
- bra t_resdnrm
-
- #########################################################################
- # smod(): computes the fp MOD of the input values X,Y. #
- # srem(): computes the fp (IEEE) REM of the input values X,Y. #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input X #
- # a1 = pointer to extended precision input Y #
- # d0 = round precision,mode #
- # #
- # The input operands X and Y can be either normalized or #
- # denormalized. #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = FREM(X,Y) or FMOD(X,Y) #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # Step 1. Save and strip signs of X and Y: signX := sign(X), #
- # signY := sign(Y), X := |X|, Y := |Y|, #
- # signQ := signX EOR signY. Record whether MOD or REM #
- # is requested. #
- # #
- # Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. #
- # If (L < 0) then #
- # R := X, go to Step 4. #
- # else #
- # R := 2^(-L)X, j := L. #
- # endif #
- # #
- # Step 3. Perform MOD(X,Y) #
- # 3.1 If R = Y, go to Step 9. #
- # 3.2 If R > Y, then { R := R - Y, Q := Q + 1} #
- # 3.3 If j = 0, go to Step 4. #
- # 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to #
- # Step 3.1. #
- # #
- # Step 4. At this point, R = X - QY = MOD(X,Y). Set #
- # Last_Subtract := false (used in Step 7 below). If #
- # MOD is requested, go to Step 6. #
- # #
- # Step 5. R = MOD(X,Y), but REM(X,Y) is requested. #
- # 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to #
- # Step 6. #
- # 5.2 If R > Y/2, then { set Last_Subtract := true, #
- # Q := Q + 1, Y := signY*Y }. Go to Step 6. #
- # 5.3 This is the tricky case of R = Y/2. If Q is odd, #
- # then { Q := Q + 1, signX := -signX }. #
- # #
- # Step 6. R := signX*R. #
- # #
- # Step 7. If Last_Subtract = true, R := R - Y. #
- # #
- # Step 8. Return signQ, last 7 bits of Q, and R as required. #
- # #
- # Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, #
- # X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), #
- # R := 0. Return signQ, last 7 bits of Q, and R. #
- # #
- #########################################################################
-
- set Mod_Flag,L_SCR3
- set Sc_Flag,L_SCR3+1
-
- set SignY,L_SCR2
- set SignX,L_SCR2+2
- set SignQ,L_SCR3+2
-
- set Y,FP_SCR0
- set Y_Hi,Y+4
- set Y_Lo,Y+8
-
- set R,FP_SCR1
- set R_Hi,R+4
- set R_Lo,R+8
-
- Scale:
- long 0x00010000,0x80000000,0x00000000,0x00000000
-
- global smod
- smod:
- clr.b FPSR_QBYTE(%a6)
- mov.l %d0,-(%sp) # save ctrl bits
- clr.b Mod_Flag(%a6)
- bra.b Mod_Rem
-
- global srem
- srem:
- clr.b FPSR_QBYTE(%a6)
- mov.l %d0,-(%sp) # save ctrl bits
- mov.b &0x1,Mod_Flag(%a6)
-
- Mod_Rem:
- #..Save sign of X and Y
- movm.l &0x3f00,-(%sp) # save data registers
- mov.w SRC_EX(%a0),%d3
- mov.w %d3,SignY(%a6)
- and.l &0x00007FFF,%d3 # Y := |Y|
-
- #
- mov.l SRC_HI(%a0),%d4
- mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y|
-
- tst.l %d3
- bne.b Y_Normal
-
- mov.l &0x00003FFE,%d3 # $3FFD + 1
- tst.l %d4
- bne.b HiY_not0
-
- HiY_0:
- mov.l %d5,%d4
- clr.l %d5
- sub.l &32,%d3
- clr.l %d6
- bfffo %d4{&0:&32},%d6
- lsl.l %d6,%d4
- sub.l %d6,%d3 # (D3,D4,D5) is normalized
- # ...with bias $7FFD
- bra.b Chk_X
-
- HiY_not0:
- clr.l %d6
- bfffo %d4{&0:&32},%d6
- sub.l %d6,%d3
- lsl.l %d6,%d4
- mov.l %d5,%d7 # a copy of D5
- lsl.l %d6,%d5
- neg.l %d6
- add.l &32,%d6
- lsr.l %d6,%d7
- or.l %d7,%d4 # (D3,D4,D5) normalized
- # ...with bias $7FFD
- bra.b Chk_X
-
- Y_Normal:
- add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized
- # ...with bias $7FFD
-
- Chk_X:
- mov.w DST_EX(%a1),%d0
- mov.w %d0,SignX(%a6)
- mov.w SignY(%a6),%d1
- eor.l %d0,%d1
- and.l &0x00008000,%d1
- mov.w %d1,SignQ(%a6) # sign(Q) obtained
- and.l &0x00007FFF,%d0
- mov.l DST_HI(%a1),%d1
- mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X|
- tst.l %d0
- bne.b X_Normal
- mov.l &0x00003FFE,%d0
- tst.l %d1
- bne.b HiX_not0
-
- HiX_0:
- mov.l %d2,%d1
- clr.l %d2
- sub.l &32,%d0
- clr.l %d6
- bfffo %d1{&0:&32},%d6
- lsl.l %d6,%d1
- sub.l %d6,%d0 # (D0,D1,D2) is normalized
- # ...with bias $7FFD
- bra.b Init
-
- HiX_not0:
- clr.l %d6
- bfffo %d1{&0:&32},%d6
- sub.l %d6,%d0
- lsl.l %d6,%d1
- mov.l %d2,%d7 # a copy of D2
- lsl.l %d6,%d2
- neg.l %d6
- add.l &32,%d6
- lsr.l %d6,%d7
- or.l %d7,%d1 # (D0,D1,D2) normalized
- # ...with bias $7FFD
- bra.b Init
-
- X_Normal:
- add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized
- # ...with bias $7FFD
-
- Init:
- #
- mov.l %d3,L_SCR1(%a6) # save biased exp(Y)
- mov.l %d0,-(%sp) # save biased exp(X)
- sub.l %d3,%d0 # L := expo(X)-expo(Y)
-
- clr.l %d6 # D6 := carry <- 0
- clr.l %d3 # D3 is Q
- mov.l &0,%a1 # A1 is k; j+k=L, Q=0
-
- #..(Carry,D1,D2) is R
- tst.l %d0
- bge.b Mod_Loop_pre
-
- #..expo(X) < expo(Y). Thus X = mod(X,Y)
- #
- mov.l (%sp)+,%d0 # restore d0
- bra.w Get_Mod
-
- Mod_Loop_pre:
- addq.l &0x4,%sp # erase exp(X)
- #..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L
- Mod_Loop:
- tst.l %d6 # test carry bit
- bgt.b R_GT_Y
-
- #..At this point carry = 0, R = (D1,D2), Y = (D4,D5)
- cmp.l %d1,%d4 # compare hi(R) and hi(Y)
- bne.b R_NE_Y
- cmp.l %d2,%d5 # compare lo(R) and lo(Y)
- bne.b R_NE_Y
-
- #..At this point, R = Y
- bra.w Rem_is_0
-
- R_NE_Y:
- #..use the borrow of the previous compare
- bcs.b R_LT_Y # borrow is set iff R < Y
-
- R_GT_Y:
- #..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0
- #..and Y < (D1,D2) < 2Y. Either way, perform R - Y
- sub.l %d5,%d2 # lo(R) - lo(Y)
- subx.l %d4,%d1 # hi(R) - hi(Y)
- clr.l %d6 # clear carry
- addq.l &1,%d3 # Q := Q + 1
-
- R_LT_Y:
- #..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0.
- tst.l %d0 # see if j = 0.
- beq.b PostLoop
-
- add.l %d3,%d3 # Q := 2Q
- add.l %d2,%d2 # lo(R) = 2lo(R)
- roxl.l &1,%d1 # hi(R) = 2hi(R) + carry
- scs %d6 # set Carry if 2(R) overflows
- addq.l &1,%a1 # k := k+1
- subq.l &1,%d0 # j := j - 1
- #..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y.
-
- bra.b Mod_Loop
-
- PostLoop:
- #..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y.
-
- #..normalize R.
- mov.l L_SCR1(%a6),%d0 # new biased expo of R
- tst.l %d1
- bne.b HiR_not0
-
- HiR_0:
- mov.l %d2,%d1
- clr.l %d2
- sub.l &32,%d0
- clr.l %d6
- bfffo %d1{&0:&32},%d6
- lsl.l %d6,%d1
- sub.l %d6,%d0 # (D0,D1,D2) is normalized
- # ...with bias $7FFD
- bra.b Get_Mod
-
- HiR_not0:
- clr.l %d6
- bfffo %d1{&0:&32},%d6
- bmi.b Get_Mod # already normalized
- sub.l %d6,%d0
- lsl.l %d6,%d1
- mov.l %d2,%d7 # a copy of D2
- lsl.l %d6,%d2
- neg.l %d6
- add.l &32,%d6
- lsr.l %d6,%d7
- or.l %d7,%d1 # (D0,D1,D2) normalized
-
- #
- Get_Mod:
- cmp.l %d0,&0x000041FE
- bge.b No_Scale
- Do_Scale:
- mov.w %d0,R(%a6)
- mov.l %d1,R_Hi(%a6)
- mov.l %d2,R_Lo(%a6)
- mov.l L_SCR1(%a6),%d6
- mov.w %d6,Y(%a6)
- mov.l %d4,Y_Hi(%a6)
- mov.l %d5,Y_Lo(%a6)
- fmov.x R(%a6),%fp0 # no exception
- mov.b &1,Sc_Flag(%a6)
- bra.b ModOrRem
- No_Scale:
- mov.l %d1,R_Hi(%a6)
- mov.l %d2,R_Lo(%a6)
- sub.l &0x3FFE,%d0
- mov.w %d0,R(%a6)
- mov.l L_SCR1(%a6),%d6
- sub.l &0x3FFE,%d6
- mov.l %d6,L_SCR1(%a6)
- fmov.x R(%a6),%fp0
- mov.w %d6,Y(%a6)
- mov.l %d4,Y_Hi(%a6)
- mov.l %d5,Y_Lo(%a6)
- clr.b Sc_Flag(%a6)
-
- #
- ModOrRem:
- tst.b Mod_Flag(%a6)
- beq.b Fix_Sign
-
- mov.l L_SCR1(%a6),%d6 # new biased expo(Y)
- subq.l &1,%d6 # biased expo(Y/2)
- cmp.l %d0,%d6
- blt.b Fix_Sign
- bgt.b Last_Sub
-
- cmp.l %d1,%d4
- bne.b Not_EQ
- cmp.l %d2,%d5
- bne.b Not_EQ
- bra.w Tie_Case
-
- Not_EQ:
- bcs.b Fix_Sign
-
- Last_Sub:
- #
- fsub.x Y(%a6),%fp0 # no exceptions
- addq.l &1,%d3 # Q := Q + 1
-
- #
- Fix_Sign:
- #..Get sign of X
- mov.w SignX(%a6),%d6
- bge.b Get_Q
- fneg.x %fp0
-
- #..Get Q
- #
- Get_Q:
- clr.l %d6
- mov.w SignQ(%a6),%d6 # D6 is sign(Q)
- mov.l &8,%d7
- lsr.l %d7,%d6
- and.l &0x0000007F,%d3 # 7 bits of Q
- or.l %d6,%d3 # sign and bits of Q
- # swap %d3
- # fmov.l %fpsr,%d6
- # and.l &0xFF00FFFF,%d6
- # or.l %d3,%d6
- # fmov.l %d6,%fpsr # put Q in fpsr
- mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr
-
- #
- Restore:
- movm.l (%sp)+,&0xfc # {%d2-%d7}
- mov.l (%sp)+,%d0
- fmov.l %d0,%fpcr
- tst.b Sc_Flag(%a6)
- beq.b Finish
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x Scale(%pc),%fp0 # may cause underflow
- bra t_catch2
- # the '040 package did this apparently to see if the dst operand for the
- # preceding fmul was a denorm. but, it better not have been since the
- # algorithm just got done playing with fp0 and expected no exceptions
- # as a result. trust me...
- # bra t_avoid_unsupp # check for denorm as a
- # ;result of the scaling
-
- Finish:
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x %fp0,%fp0 # capture exceptions & round
- bra t_catch2
-
- Rem_is_0:
- #..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1)
- addq.l &1,%d3
- cmp.l %d0,&8 # D0 is j
- bge.b Q_Big
-
- lsl.l %d0,%d3
- bra.b Set_R_0
-
- Q_Big:
- clr.l %d3
-
- Set_R_0:
- fmov.s &0x00000000,%fp0
- clr.b Sc_Flag(%a6)
- bra.w Fix_Sign
-
- Tie_Case:
- #..Check parity of Q
- mov.l %d3,%d6
- and.l &0x00000001,%d6
- tst.l %d6
- beq.w Fix_Sign # Q is even
-
- #..Q is odd, Q := Q + 1, signX := -signX
- addq.l &1,%d3
- mov.w SignX(%a6),%d6
- eor.l &0x00008000,%d6
- mov.w %d6,SignX(%a6)
- bra.w Fix_Sign
-
- #########################################################################
- # XDEF **************************************************************** #
- # tag(): return the optype of the input ext fp number #
- # #
- # This routine is used by the 060FPLSP. #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision operand #
- # #
- # OUTPUT ************************************************************** #
- # d0 = value of type tag #
- # one of: NORM, INF, QNAN, SNAN, DENORM, ZERO #
- # #
- # ALGORITHM *********************************************************** #
- # Simply test the exponent, j-bit, and mantissa values to #
- # determine the type of operand. #
- # If it's an unnormalized zero, alter the operand and force it #
- # to be a normal zero. #
- # #
- #########################################################################
-
- global tag
- tag:
- mov.w FTEMP_EX(%a0), %d0 # extract exponent
- andi.w &0x7fff, %d0 # strip off sign
- cmpi.w %d0, &0x7fff # is (EXP == MAX)?
- beq.b inf_or_nan_x
- not_inf_or_nan_x:
- btst &0x7,FTEMP_HI(%a0)
- beq.b not_norm_x
- is_norm_x:
- mov.b &NORM, %d0
- rts
- not_norm_x:
- tst.w %d0 # is exponent = 0?
- bne.b is_unnorm_x
- not_unnorm_x:
- tst.l FTEMP_HI(%a0)
- bne.b is_denorm_x
- tst.l FTEMP_LO(%a0)
- bne.b is_denorm_x
- is_zero_x:
- mov.b &ZERO, %d0
- rts
- is_denorm_x:
- mov.b &DENORM, %d0
- rts
- is_unnorm_x:
- bsr.l unnorm_fix # convert to norm,denorm,or zero
- rts
- is_unnorm_reg_x:
- mov.b &UNNORM, %d0
- rts
- inf_or_nan_x:
- tst.l FTEMP_LO(%a0)
- bne.b is_nan_x
- mov.l FTEMP_HI(%a0), %d0
- and.l &0x7fffffff, %d0 # msb is a don't care!
- bne.b is_nan_x
- is_inf_x:
- mov.b &INF, %d0
- rts
- is_nan_x:
- mov.b &QNAN, %d0
- rts
-
- #############################################################
-
- qnan: long 0x7fff0000, 0xffffffff, 0xffffffff
-
- #########################################################################
- # XDEF **************************************************************** #
- # t_dz(): Handle 060FPLSP dz exception for "flogn" emulation. #
- # t_dz2(): Handle 060FPLSP dz exception for "fatanh" emulation. #
- # #
- # These rouitnes are used by the 060FPLSP package. #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand. #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = default DZ result. #
- # #
- # ALGORITHM *********************************************************** #
- # Transcendental emulation for the 060FPLSP has detected that #
- # a DZ exception should occur for the instruction. If DZ is disabled, #
- # return the default result. #
- # If DZ is enabled, the dst operand should be returned unscathed #
- # in fp0 while fp1 is used to create a DZ exception so that the #
- # operating system can log that such an event occurred. #
- # #
- #########################################################################
-
- global t_dz
- t_dz:
- tst.b SRC_EX(%a0) # check sign for neg or pos
- bpl.b dz_pinf # branch if pos sign
-
- global t_dz2
- t_dz2:
- ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ
-
- btst &dz_bit,FPCR_ENABLE(%a6)
- bne.b dz_minf_ena
-
- # dz is disabled. return a -INF.
- fmov.s &0xff800000,%fp0 # return -INF
- rts
-
- # dz is enabled. create a dz exception so the user can record it
- # but use fp1 instead. return the dst operand unscathed in fp0.
- dz_minf_ena:
- fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed
- fmov.l USER_FPCR(%a6),%fpcr
- fmov.s &0xbf800000,%fp1 # load -1
- fdiv.s &0x00000000,%fp1 # -1 / 0
- rts
-
- dz_pinf:
- ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ
-
- btst &dz_bit,FPCR_ENABLE(%a6)
- bne.b dz_pinf_ena
-
- # dz is disabled. return a +INF.
- fmov.s &0x7f800000,%fp0 # return +INF
- rts
-
- # dz is enabled. create a dz exception so the user can record it
- # but use fp1 instead. return the dst operand unscathed in fp0.
- dz_pinf_ena:
- fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed
- fmov.l USER_FPCR(%a6),%fpcr
- fmov.s &0x3f800000,%fp1 # load +1
- fdiv.s &0x00000000,%fp1 # +1 / 0
- rts
-
- #########################################################################
- # XDEF **************************************************************** #
- # t_operr(): Handle 060FPLSP OPERR exception during emulation. #
- # #
- # This routine is used by the 060FPLSP package. #
- # #
- # XREF **************************************************************** #
- # None. #
- # #
- # INPUT *************************************************************** #
- # fp1 = source operand #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = default result #
- # fp1 = unchanged #
- # #
- # ALGORITHM *********************************************************** #
- # An operand error should occur as the result of transcendental #
- # emulation in the 060FPLSP. If OPERR is disabled, just return a NAN #
- # in fp0. If OPERR is enabled, return the dst operand unscathed in fp0 #
- # and the source operand in fp1. Use fp2 to create an OPERR exception #
- # so that the operating system can log the event. #
- # #
- #########################################################################
-
- global t_operr
- t_operr:
- ori.l &opnan_mask,USER_FPSR(%a6) # set NAN/OPERR/AIOP
-
- btst &operr_bit,FPCR_ENABLE(%a6)
- bne.b operr_ena
-
- # operr is disabled. return a QNAN in fp0
- fmovm.x qnan(%pc),&0x80 # return QNAN
- rts
-
- # operr is enabled. create an operr exception so the user can record it
- # but use fp2 instead. return the dst operand unscathed in fp0.
- operr_ena:
- fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed
- fmov.l USER_FPCR(%a6),%fpcr
- fmovm.x &0x04,-(%sp) # save fp2
- fmov.s &0x7f800000,%fp2 # load +INF
- fmul.s &0x00000000,%fp2 # +INF x 0
- fmovm.x (%sp)+,&0x20 # restore fp2
- rts
-
- pls_huge:
- long 0x7ffe0000,0xffffffff,0xffffffff
- mns_huge:
- long 0xfffe0000,0xffffffff,0xffffffff
- pls_tiny:
- long 0x00000000,0x80000000,0x00000000
- mns_tiny:
- long 0x80000000,0x80000000,0x00000000
-
- #########################################################################
- # XDEF **************************************************************** #
- # t_unfl(): Handle 060FPLSP underflow exception during emulation. #
- # t_unfl2(): Handle 060FPLSP underflow exception during #
- # emulation. result always positive. #
- # #
- # This routine is used by the 060FPLSP package. #
- # #
- # XREF **************************************************************** #
- # None. #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = default underflow result #
- # #
- # ALGORITHM *********************************************************** #
- # An underflow should occur as the result of transcendental #
- # emulation in the 060FPLSP. Create an underflow by using "fmul" #
- # and two very small numbers of appropriate sign so the the operating #
- # system can log the event. #
- # #
- #########################################################################
-
- global t_unfl
- t_unfl:
- tst.b SRC_EX(%a0)
- bpl.b unf_pos
-
- global t_unfl2
- t_unfl2:
- ori.l &unfinx_mask+neg_mask,USER_FPSR(%a6) # set N/UNFL/INEX2/AUNFL/AINEX
-
- fmov.l USER_FPCR(%a6),%fpcr
- fmovm.x mns_tiny(%pc),&0x80
- fmul.x pls_tiny(%pc),%fp0
-
- fmov.l %fpsr,%d0
- rol.l &0x8,%d0
- mov.b %d0,FPSR_CC(%a6)
- rts
- unf_pos:
- ori.w &unfinx_mask,FPSR_EXCEPT(%a6) # set UNFL/INEX2/AUNFL/AINEX
-
- fmov.l USER_FPCR(%a6),%fpcr
- fmovm.x pls_tiny(%pc),&0x80
- fmul.x %fp0,%fp0
-
- fmov.l %fpsr,%d0
- rol.l &0x8,%d0
- mov.b %d0,FPSR_CC(%a6)
- rts
-
- #########################################################################
- # XDEF **************************************************************** #
- # t_ovfl(): Handle 060FPLSP overflow exception during emulation. #
- # (monadic) #
- # t_ovfl2(): Handle 060FPLSP overflow exception during #
- # emulation. result always positive. (dyadic) #
- # t_ovfl_sc(): Handle 060FPLSP overflow exception during #
- # emulation for "fscale". #
- # #
- # This routine is used by the 060FPLSP package. #
- # #
- # XREF **************************************************************** #
- # None. #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = default underflow result #
- # #
- # ALGORITHM *********************************************************** #
- # An overflow should occur as the result of transcendental #
- # emulation in the 060FPLSP. Create an overflow by using "fmul" #
- # and two very lareg numbers of appropriate sign so the the operating #
- # system can log the event. #
- # For t_ovfl_sc() we take special care not to lose the INEX2 bit. #
- # #
- #########################################################################
-
- global t_ovfl_sc
- t_ovfl_sc:
- ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX
-
- mov.b %d0,%d1 # fetch rnd prec,mode
- andi.b &0xc0,%d1 # extract prec
- beq.w ovfl_work
-
- # dst op is a DENORM. we have to normalize the mantissa to see if the
- # result would be inexact for the given precision. make a copy of the
- # dst so we don't screw up the version passed to us.
- mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6)
- mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6)
- mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6)
- lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0
- movm.l &0xc080,-(%sp) # save d0-d1/a0
- bsr.l norm # normalize mantissa
- movm.l (%sp)+,&0x0103 # restore d0-d1/a0
-
- cmpi.b %d1,&0x40 # is precision sgl?
- bne.b ovfl_sc_dbl # no; dbl
- ovfl_sc_sgl:
- tst.l LOCAL_LO(%a0) # is lo lw of sgl set?
- bne.b ovfl_sc_inx # yes
- tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set?
- bne.b ovfl_sc_inx # yes
- bra.w ovfl_work # don't set INEX2
- ovfl_sc_dbl:
- mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of
- andi.l &0x7ff,%d1 # dbl mantissa set?
- beq.w ovfl_work # no; don't set INEX2
- ovfl_sc_inx:
- ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2
- bra.b ovfl_work # continue
-
- global t_ovfl
- t_ovfl:
- ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX
- ovfl_work:
- tst.b SRC_EX(%a0)
- bpl.b ovfl_p
- ovfl_m:
- fmov.l USER_FPCR(%a6),%fpcr
- fmovm.x mns_huge(%pc),&0x80
- fmul.x pls_huge(%pc),%fp0
-
- fmov.l %fpsr,%d0
- rol.l &0x8,%d0
- ori.b &neg_mask,%d0
- mov.b %d0,FPSR_CC(%a6)
- rts
- ovfl_p:
- fmov.l USER_FPCR(%a6),%fpcr
- fmovm.x pls_huge(%pc),&0x80
- fmul.x pls_huge(%pc),%fp0
-
- fmov.l %fpsr,%d0
- rol.l &0x8,%d0
- mov.b %d0,FPSR_CC(%a6)
- rts
-
- global t_ovfl2
- t_ovfl2:
- ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX
- fmov.l USER_FPCR(%a6),%fpcr
- fmovm.x pls_huge(%pc),&0x80
- fmul.x pls_huge(%pc),%fp0
-
- fmov.l %fpsr,%d0
- rol.l &0x8,%d0
- mov.b %d0,FPSR_CC(%a6)
- rts
-
- #########################################################################
- # XDEF **************************************************************** #
- # t_catch(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during #
- # emulation. #
- # t_catch2(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during #
- # emulation. #
- # #
- # These routines are used by the 060FPLSP package. #
- # #
- # XREF **************************************************************** #
- # None. #
- # #
- # INPUT *************************************************************** #
- # fp0 = default underflow or overflow result #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = default result #
- # #
- # ALGORITHM *********************************************************** #
- # If an overflow or underflow occurred during the last #
- # instruction of transcendental 060FPLSP emulation, then it has already #
- # occurred and has been logged. Now we need to see if an inexact #
- # exception should occur. #
- # #
- #########################################################################
-
- global t_catch2
- t_catch2:
- fmov.l %fpsr,%d0
- or.l %d0,USER_FPSR(%a6)
- bra.b inx2_work
-
- global t_catch
- t_catch:
- fmov.l %fpsr,%d0
- or.l %d0,USER_FPSR(%a6)
-
- #########################################################################
- # XDEF **************************************************************** #
- # t_inx2(): Handle inexact 060FPLSP exception during emulation. #
- # t_pinx2(): Handle inexact 060FPLSP exception for "+" results. #
- # t_minx2(): Handle inexact 060FPLSP exception for "-" results. #
- # #
- # XREF **************************************************************** #
- # None. #
- # #
- # INPUT *************************************************************** #
- # fp0 = default result #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = default result #
- # #
- # ALGORITHM *********************************************************** #
- # The last instruction of transcendental emulation for the #
- # 060FPLSP should be inexact. So, if inexact is enabled, then we create #
- # the event here by adding a large and very small number together #
- # so that the operating system can log the event. #
- # Must check, too, if the result was zero, in which case we just #
- # set the FPSR bits and return. #
- # #
- #########################################################################
-
- global t_inx2
- t_inx2:
- fblt.w t_minx2
- fbeq.w inx2_zero
-
- global t_pinx2
- t_pinx2:
- ori.w &inx2a_mask,FPSR_EXCEPT(%a6) # set INEX2/AINEX
- bra.b inx2_work
-
- global t_minx2
- t_minx2:
- ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6)
-
- inx2_work:
- btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled?
- bne.b inx2_work_ena # yes
- rts
- inx2_work_ena:
- fmov.l USER_FPCR(%a6),%fpcr # insert user's exceptions
- fmov.s &0x3f800000,%fp1 # load +1
- fadd.x pls_tiny(%pc),%fp1 # cause exception
- rts
-
- inx2_zero:
- mov.b &z_bmask,FPSR_CC(%a6)
- ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX/AINEX
- rts
-
- #########################################################################
- # XDEF **************************************************************** #
- # t_extdnrm(): Handle DENORM inputs in 060FPLSP. #
- # t_resdnrm(): Handle DENORM inputs in 060FPLSP for "fscale". #
- # #
- # This routine is used by the 060FPLSP package. #
- # #
- # XREF **************************************************************** #
- # None. #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision input operand #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = default result #
- # #
- # ALGORITHM *********************************************************** #
- # For all functions that have a denormalized input and that #
- # f(x)=x, this is the entry point. #
- # DENORM value is moved using "fmove" which triggers an exception #
- # if enabled so the operating system can log the event. #
- # #
- #########################################################################
-
- global t_extdnrm
- t_extdnrm:
- fmov.l USER_FPCR(%a6),%fpcr
- fmov.x SRC_EX(%a0),%fp0
- fmov.l %fpsr,%d0
- ori.l &unfinx_mask,%d0
- or.l %d0,USER_FPSR(%a6)
- rts
-
- global t_resdnrm
- t_resdnrm:
- fmov.l USER_FPCR(%a6),%fpcr
- fmov.x SRC_EX(%a0),%fp0
- fmov.l %fpsr,%d0
- or.l %d0,USER_FPSR(%a6)
- rts
-
- ##########################################
-
- #
- # sto_cos:
- # This is used by fsincos library emulation. The correct
- # values are already in fp0 and fp1 so we do nothing here.
- #
- global sto_cos
- sto_cos:
- rts
-
- ##########################################
-
- #
- # dst_qnan --- force result when destination is a NaN
- #
- global dst_qnan
- dst_qnan:
- fmov.x DST(%a1),%fp0
- tst.b DST_EX(%a1)
- bmi.b dst_qnan_m
- dst_qnan_p:
- mov.b &nan_bmask,FPSR_CC(%a6)
- rts
- dst_qnan_m:
- mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6)
- rts
-
- #
- # src_qnan --- force result when source is a NaN
- #
- global src_qnan
- src_qnan:
- fmov.x SRC(%a0),%fp0
- tst.b SRC_EX(%a0)
- bmi.b src_qnan_m
- src_qnan_p:
- mov.b &nan_bmask,FPSR_CC(%a6)
- rts
- src_qnan_m:
- mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6)
- rts
-
- ##########################################
-
- #
- # Native instruction support
- #
- # Some systems may need entry points even for 68060 native
- # instructions. These routines are provided for
- # convenience.
- #
- global _fadds_
- _fadds_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.s 0x8(%sp),%fp0 # load sgl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fadd.s 0x8(%sp),%fp0 # fadd w/ sgl src
- rts
-
- global _faddd_
- _faddd_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.d 0x8(%sp),%fp0 # load dbl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fadd.d 0xc(%sp),%fp0 # fadd w/ dbl src
- rts
-
- global _faddx_
- _faddx_:
- fmovm.x 0x4(%sp),&0x80 # load ext dst
- fadd.x 0x10(%sp),%fp0 # fadd w/ ext src
- rts
-
- global _fsubs_
- _fsubs_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.s 0x8(%sp),%fp0 # load sgl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fsub.s 0x8(%sp),%fp0 # fsub w/ sgl src
- rts
-
- global _fsubd_
- _fsubd_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.d 0x8(%sp),%fp0 # load dbl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fsub.d 0xc(%sp),%fp0 # fsub w/ dbl src
- rts
-
- global _fsubx_
- _fsubx_:
- fmovm.x 0x4(%sp),&0x80 # load ext dst
- fsub.x 0x10(%sp),%fp0 # fsub w/ ext src
- rts
-
- global _fmuls_
- _fmuls_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.s 0x8(%sp),%fp0 # load sgl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fmul.s 0x8(%sp),%fp0 # fmul w/ sgl src
- rts
-
- global _fmuld_
- _fmuld_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.d 0x8(%sp),%fp0 # load dbl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fmul.d 0xc(%sp),%fp0 # fmul w/ dbl src
- rts
-
- global _fmulx_
- _fmulx_:
- fmovm.x 0x4(%sp),&0x80 # load ext dst
- fmul.x 0x10(%sp),%fp0 # fmul w/ ext src
- rts
-
- global _fdivs_
- _fdivs_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.s 0x8(%sp),%fp0 # load sgl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fdiv.s 0x8(%sp),%fp0 # fdiv w/ sgl src
- rts
-
- global _fdivd_
- _fdivd_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.d 0x8(%sp),%fp0 # load dbl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fdiv.d 0xc(%sp),%fp0 # fdiv w/ dbl src
- rts
-
- global _fdivx_
- _fdivx_:
- fmovm.x 0x4(%sp),&0x80 # load ext dst
- fdiv.x 0x10(%sp),%fp0 # fdiv w/ ext src
- rts
-
- global _fabss_
- _fabss_:
- fabs.s 0x4(%sp),%fp0 # fabs w/ sgl src
- rts
-
- global _fabsd_
- _fabsd_:
- fabs.d 0x4(%sp),%fp0 # fabs w/ dbl src
- rts
-
- global _fabsx_
- _fabsx_:
- fabs.x 0x4(%sp),%fp0 # fabs w/ ext src
- rts
-
- global _fnegs_
- _fnegs_:
- fneg.s 0x4(%sp),%fp0 # fneg w/ sgl src
- rts
-
- global _fnegd_
- _fnegd_:
- fneg.d 0x4(%sp),%fp0 # fneg w/ dbl src
- rts
-
- global _fnegx_
- _fnegx_:
- fneg.x 0x4(%sp),%fp0 # fneg w/ ext src
- rts
-
- global _fsqrts_
- _fsqrts_:
- fsqrt.s 0x4(%sp),%fp0 # fsqrt w/ sgl src
- rts
-
- global _fsqrtd_
- _fsqrtd_:
- fsqrt.d 0x4(%sp),%fp0 # fsqrt w/ dbl src
- rts
-
- global _fsqrtx_
- _fsqrtx_:
- fsqrt.x 0x4(%sp),%fp0 # fsqrt w/ ext src
- rts
-
- global _fints_
- _fints_:
- fint.s 0x4(%sp),%fp0 # fint w/ sgl src
- rts
-
- global _fintd_
- _fintd_:
- fint.d 0x4(%sp),%fp0 # fint w/ dbl src
- rts
-
- global _fintx_
- _fintx_:
- fint.x 0x4(%sp),%fp0 # fint w/ ext src
- rts
-
- global _fintrzs_
- _fintrzs_:
- fintrz.s 0x4(%sp),%fp0 # fintrz w/ sgl src
- rts
-
- global _fintrzd_
- _fintrzd_:
- fintrz.d 0x4(%sp),%fp0 # fintrx w/ dbl src
- rts
-
- global _fintrzx_
- _fintrzx_:
- fintrz.x 0x4(%sp),%fp0 # fintrz w/ ext src
- rts
-
- ########################################################################
-
- #########################################################################
- # src_zero(): Return signed zero according to sign of src operand. #
- #########################################################################
- global src_zero
- src_zero:
- tst.b SRC_EX(%a0) # get sign of src operand
- bmi.b ld_mzero # if neg, load neg zero
-
- #
- # ld_pzero(): return a positive zero.
- #
- global ld_pzero
- ld_pzero:
- fmov.s &0x00000000,%fp0 # load +0
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-
- # ld_mzero(): return a negative zero.
- global ld_mzero
- ld_mzero:
- fmov.s &0x80000000,%fp0 # load -0
- mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits
- rts
-
- #########################################################################
- # dst_zero(): Return signed zero according to sign of dst operand. #
- #########################################################################
- global dst_zero
- dst_zero:
- tst.b DST_EX(%a1) # get sign of dst operand
- bmi.b ld_mzero # if neg, load neg zero
- bra.b ld_pzero # load positive zero
-
- #########################################################################
- # src_inf(): Return signed inf according to sign of src operand. #
- #########################################################################
- global src_inf
- src_inf:
- tst.b SRC_EX(%a0) # get sign of src operand
- bmi.b ld_minf # if negative branch
-
- #
- # ld_pinf(): return a positive infinity.
- #
- global ld_pinf
- ld_pinf:
- fmov.s &0x7f800000,%fp0 # load +INF
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit
- rts
-
- #
- # ld_minf():return a negative infinity.
- #
- global ld_minf
- ld_minf:
- fmov.s &0xff800000,%fp0 # load -INF
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
- rts
-
- #########################################################################
- # dst_inf(): Return signed inf according to sign of dst operand. #
- #########################################################################
- global dst_inf
- dst_inf:
- tst.b DST_EX(%a1) # get sign of dst operand
- bmi.b ld_minf # if negative branch
- bra.b ld_pinf
-
- global szr_inf
- #################################################################
- # szr_inf(): Return +ZERO for a negative src operand or #
- # +INF for a positive src operand. #
- # Routine used for fetox, ftwotox, and ftentox. #
- #################################################################
- szr_inf:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.b ld_pzero
- bra.b ld_pinf
-
- #########################################################################
- # sopr_inf(): Return +INF for a positive src operand or #
- # jump to operand error routine for a negative src operand. #
- # Routine used for flogn, flognp1, flog10, and flog2. #
- #########################################################################
- global sopr_inf
- sopr_inf:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.w t_operr
- bra.b ld_pinf
-
- #################################################################
- # setoxm1i(): Return minus one for a negative src operand or #
- # positive infinity for a positive src operand. #
- # Routine used for fetoxm1. #
- #################################################################
- global setoxm1i
- setoxm1i:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.b ld_mone
- bra.b ld_pinf
-
- #########################################################################
- # src_one(): Return signed one according to sign of src operand. #
- #########################################################################
- global src_one
- src_one:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.b ld_mone
-
- #
- # ld_pone(): return positive one.
- #
- global ld_pone
- ld_pone:
- fmov.s &0x3f800000,%fp0 # load +1
- clr.b FPSR_CC(%a6)
- rts
-
- #
- # ld_mone(): return negative one.
- #
- global ld_mone
- ld_mone:
- fmov.s &0xbf800000,%fp0 # load -1
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
- ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235
- mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235
-
- #################################################################
- # spi_2(): Return signed PI/2 according to sign of src operand. #
- #################################################################
- global spi_2
- spi_2:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.b ld_mpi2
-
- #
- # ld_ppi2(): return positive PI/2.
- #
- global ld_ppi2
- ld_ppi2:
- fmov.l %d0,%fpcr
- fmov.x ppiby2(%pc),%fp0 # load +pi/2
- bra.w t_pinx2 # set INEX2
-
- #
- # ld_mpi2(): return negative PI/2.
- #
- global ld_mpi2
- ld_mpi2:
- fmov.l %d0,%fpcr
- fmov.x mpiby2(%pc),%fp0 # load -pi/2
- bra.w t_minx2 # set INEX2
-
- ####################################################
- # The following routines give support for fsincos. #
- ####################################################
-
- #
- # ssincosz(): When the src operand is ZERO, store a one in the
- # cosine register and return a ZERO in fp0 w/ the same sign
- # as the src operand.
- #
- global ssincosz
- ssincosz:
- fmov.s &0x3f800000,%fp1
- tst.b SRC_EX(%a0) # test sign
- bpl.b sincoszp
- fmov.s &0x80000000,%fp0 # return sin result in fp0
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6)
- rts
- sincoszp:
- fmov.s &0x00000000,%fp0 # return sin result in fp0
- mov.b &z_bmask,FPSR_CC(%a6)
- rts
-
- #
- # ssincosi(): When the src operand is INF, store a QNAN in the cosine
- # register and jump to the operand error routine for negative
- # src operands.
- #
- global ssincosi
- ssincosi:
- fmov.x qnan(%pc),%fp1 # load NAN
- bra.w t_operr
-
- #
- # ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine
- # register and branch to the src QNAN routine.
- #
- global ssincosqnan
- ssincosqnan:
- fmov.x LOCAL_EX(%a0),%fp1
- bra.w src_qnan
-
- ########################################################################
-
- global smod_sdnrm
- global smod_snorm
- smod_sdnrm:
- smod_snorm:
- mov.b DTAG(%a6),%d1
- beq.l smod
- cmpi.b %d1,&ZERO
- beq.w smod_zro
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l smod
- bra.l dst_qnan
-
- global smod_szero
- smod_szero:
- mov.b DTAG(%a6),%d1
- beq.l t_operr
- cmpi.b %d1,&ZERO
- beq.l t_operr
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l t_operr
- bra.l dst_qnan
-
- global smod_sinf
- smod_sinf:
- mov.b DTAG(%a6),%d1
- beq.l smod_fpn
- cmpi.b %d1,&ZERO
- beq.l smod_zro
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l smod_fpn
- bra.l dst_qnan
-
- smod_zro:
- srem_zro:
- mov.b SRC_EX(%a0),%d1 # get src sign
- mov.b DST_EX(%a1),%d0 # get dst sign
- eor.b %d0,%d1 # get qbyte sign
- andi.b &0x80,%d1
- mov.b %d1,FPSR_QBYTE(%a6)
- tst.b %d0
- bpl.w ld_pzero
- bra.w ld_mzero
-
- smod_fpn:
- srem_fpn:
- clr.b FPSR_QBYTE(%a6)
- mov.l %d0,-(%sp)
- mov.b SRC_EX(%a0),%d1 # get src sign
- mov.b DST_EX(%a1),%d0 # get dst sign
- eor.b %d0,%d1 # get qbyte sign
- andi.b &0x80,%d1
- mov.b %d1,FPSR_QBYTE(%a6)
- cmpi.b DTAG(%a6),&DENORM
- bne.b smod_nrm
- lea DST(%a1),%a0
- mov.l (%sp)+,%d0
- bra t_resdnrm
- smod_nrm:
- fmov.l (%sp)+,%fpcr
- fmov.x DST(%a1),%fp0
- tst.b DST_EX(%a1)
- bmi.b smod_nrm_neg
- rts
-
- smod_nrm_neg:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' code
- rts
-
- #########################################################################
- global srem_snorm
- global srem_sdnrm
- srem_sdnrm:
- srem_snorm:
- mov.b DTAG(%a6),%d1
- beq.l srem
- cmpi.b %d1,&ZERO
- beq.w srem_zro
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l srem
- bra.l dst_qnan
-
- global srem_szero
- srem_szero:
- mov.b DTAG(%a6),%d1
- beq.l t_operr
- cmpi.b %d1,&ZERO
- beq.l t_operr
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l t_operr
- bra.l dst_qnan
-
- global srem_sinf
- srem_sinf:
- mov.b DTAG(%a6),%d1
- beq.w srem_fpn
- cmpi.b %d1,&ZERO
- beq.w srem_zro
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l srem_fpn
- bra.l dst_qnan
-
- #########################################################################
-
- global sscale_snorm
- global sscale_sdnrm
- sscale_snorm:
- sscale_sdnrm:
- mov.b DTAG(%a6),%d1
- beq.l sscale
- cmpi.b %d1,&ZERO
- beq.l dst_zero
- cmpi.b %d1,&INF
- beq.l dst_inf
- cmpi.b %d1,&DENORM
- beq.l sscale
- bra.l dst_qnan
-
- global sscale_szero
- sscale_szero:
- mov.b DTAG(%a6),%d1
- beq.l sscale
- cmpi.b %d1,&ZERO
- beq.l dst_zero
- cmpi.b %d1,&INF
- beq.l dst_inf
- cmpi.b %d1,&DENORM
- beq.l sscale
- bra.l dst_qnan
-
- global sscale_sinf
- sscale_sinf:
- mov.b DTAG(%a6),%d1
- beq.l t_operr
- cmpi.b %d1,&QNAN
- beq.l dst_qnan
- bra.l t_operr
-
- ########################################################################
-
- global sop_sqnan
- sop_sqnan:
- mov.b DTAG(%a6),%d1
- cmpi.b %d1,&QNAN
- beq.l dst_qnan
- bra.l src_qnan
-
- #########################################################################
- # norm(): normalize the mantissa of an extended precision input. the #
- # input operand should not be normalized already. #
- # #
- # XDEF **************************************************************** #
- # norm() #
- # #
- # XREF **************************************************************** #
- # none #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer fp extended precision operand to normalize #
- # #
- # OUTPUT ************************************************************** #
- # d0 = number of bit positions the mantissa was shifted #
- # a0 = the input operand's mantissa is normalized; the exponent #
- # is unchanged. #
- # #
- #########################################################################
- global norm
- norm:
- mov.l %d2, -(%sp) # create some temp regs
- mov.l %d3, -(%sp)
-
- mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa)
- mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa)
-
- bfffo %d0{&0:&32}, %d2 # how many places to shift?
- beq.b norm_lo # hi(man) is all zeroes!
-
- norm_hi:
- lsl.l %d2, %d0 # left shift hi(man)
- bfextu %d1{&0:%d2}, %d3 # extract lo bits
-
- or.l %d3, %d0 # create hi(man)
- lsl.l %d2, %d1 # create lo(man)
-
- mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
- mov.l %d1, FTEMP_LO(%a0) # store new lo(man)
-
- mov.l %d2, %d0 # return shift amount
-
- mov.l (%sp)+, %d3 # restore temp regs
- mov.l (%sp)+, %d2
-
- rts
-
- norm_lo:
- bfffo %d1{&0:&32}, %d2 # how many places to shift?
- lsl.l %d2, %d1 # shift lo(man)
- add.l &32, %d2 # add 32 to shft amount
-
- mov.l %d1, FTEMP_HI(%a0) # store hi(man)
- clr.l FTEMP_LO(%a0) # lo(man) is now zero
-
- mov.l %d2, %d0 # return shift amount
-
- mov.l (%sp)+, %d3 # restore temp regs
- mov.l (%sp)+, %d2
-
- rts
-
- #########################################################################
- # unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO #
- # - returns corresponding optype tag #
- # #
- # XDEF **************************************************************** #
- # unnorm_fix() #
- # #
- # XREF **************************************************************** #
- # norm() - normalize the mantissa #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to unnormalized extended precision number #
- # #
- # OUTPUT ************************************************************** #
- # d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO #
- # a0 = input operand has been converted to a norm, denorm, or #
- # zero; both the exponent and mantissa are changed. #
- # #
- #########################################################################
-
- global unnorm_fix
- unnorm_fix:
- bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed?
- bne.b unnorm_shift # hi(man) is not all zeroes
-
- #
- # hi(man) is all zeroes so see if any bits in lo(man) are set
- #
- unnorm_chk_lo:
- bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero?
- beq.w unnorm_zero # yes
-
- add.w &32, %d0 # no; fix shift distance
-
- #
- # d0 = # shifts needed for complete normalization
- #
- unnorm_shift:
- clr.l %d1 # clear top word
- mov.w FTEMP_EX(%a0), %d1 # extract exponent
- and.w &0x7fff, %d1 # strip off sgn
-
- cmp.w %d0, %d1 # will denorm push exp < 0?
- bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0
-
- #
- # exponent would not go < 0. therefore, number stays normalized
- #
- sub.w %d0, %d1 # shift exponent value
- mov.w FTEMP_EX(%a0), %d0 # load old exponent
- and.w &0x8000, %d0 # save old sign
- or.w %d0, %d1 # {sgn,new exp}
- mov.w %d1, FTEMP_EX(%a0) # insert new exponent
-
- bsr.l norm # normalize UNNORM
-
- mov.b &NORM, %d0 # return new optype tag
- rts
-
- #
- # exponent would go < 0, so only denormalize until exp = 0
- #
- unnorm_nrm_zero:
- cmp.b %d1, &32 # is exp <= 32?
- bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent
-
- bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man)
- mov.l %d0, FTEMP_HI(%a0) # save new hi(man)
-
- mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
- lsl.l %d1, %d0 # extract new lo(man)
- mov.l %d0, FTEMP_LO(%a0) # save new lo(man)
-
- and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
-
- mov.b &DENORM, %d0 # return new optype tag
- rts
-
- #
- # only mantissa bits set are in lo(man)
- #
- unnorm_nrm_zero_lrg:
- sub.w &32, %d1 # adjust shft amt by 32
-
- mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
- lsl.l %d1, %d0 # left shift lo(man)
-
- mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
- clr.l FTEMP_LO(%a0) # lo(man) = 0
-
- and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
-
- mov.b &DENORM, %d0 # return new optype tag
- rts
-
- #
- # whole mantissa is zero so this UNNORM is actually a zero
- #
- unnorm_zero:
- and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero
-
- mov.b &ZERO, %d0 # fix optype tag
- rts
-